IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v302y2021ics0306261921009211.html
   My bibliography  Save this article

Demand charges and user flexibility – Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector

Author

Listed:
  • van Zoest, Vera
  • El Gohary, Fouad
  • Ngai, Edith C.H.
  • Bartusch, Cajsa

Abstract

Demand-based charges have been employed as a tool intended to reduce electricity users’ maximum demand but there is a lack of consensus regarding their efficacy. One reason for this may be the diversity in the flexibility potential of different types of users. This study explores the flexibility potential of different types of electricity consumers in the small to medium-sized commercial sector (35-63A) in response to a compulsory demand charge. The objective is to characterize varying levels of flexibility with respect to different types of commercial users with different load patterns. A multivariate clustering technique was used to group commercial users with comparable load patterns based on a year of hourly data before the tariff change was introduced. This method was used to: (1) match users from the intervention area and reference area with similar load patterns, without losing any user data, and (2) compare how users with different load patterns react differently to the tariff change. We found clear distinctions in the types of commercial users in each cluster and their response to the tariff, demonstrating the extent to which demand flexibility may be dependent on the nature of an organization’s activities and its respective load patterns. The highest demand flexibility was found in clusters which had a large share of users in the IT sector, commerce and public administration. The lowest demand flexibility was found in the real estate and education sectors. Future research should further investigate these variations and explore the possibilities of tailoring interventions to the specific types of users.

Suggested Citation

  • van Zoest, Vera & El Gohary, Fouad & Ngai, Edith C.H. & Bartusch, Cajsa, 2021. "Demand charges and user flexibility – Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector," Applied Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009211
    DOI: 10.1016/j.apenergy.2021.117543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921009211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio Sánchez-Esguevillas, 2012. "Classification and Clustering of Electricity Demand Patterns in Industrial Parks," Energies, MDPI, vol. 5(12), pages 1-14, December.
    2. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    3. Jang, Dongsik & Eom, Jiyong & Jae Park, Min & Jeung Rho, Jae, 2016. "Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers," Energy Policy, Elsevier, vol. 88(C), pages 11-26.
    4. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
    5. Yilmaz, S. & Rinaldi, A. & Patel, M.K., 2020. "DSM interactions: What is the impact of appliance energy efficiency measures on the demand response (peak load management)?," Energy Policy, Elsevier, vol. 139(C).
    6. Öhrlund, Isak & Schultzberg, Mårten & Bartusch, Cajsa, 2019. "Identifying and estimating the effects of a mandatory billing demand charge," Applied Energy, Elsevier, vol. 237(C), pages 885-895.
    7. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    8. Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
    9. Wohlfarth, Katharina & Klobasa, Marian & Gutknecht, Ralph, 2020. "Demand response in the service sector – Theoretical, technical and practical potentials," Applied Energy, Elsevier, vol. 258(C).
    10. Fateh Nassim Melzi & Allou Same & Mohamed Haykel Zayani & Latifa Oukhellou, 2017. "A Dedicated Mixture Model for Clustering Smart Meter Data: Identification and Analysis of Electricity Consumption Behaviors," Energies, MDPI, vol. 10(10), pages 1-21, September.
    11. Katrina Jessoe & David Rapson, 2015. "Commercial and Industrial Demand Response Under Mandatory Time-of-Use Electricity Pricing," Journal of Industrial Economics, Wiley Blackwell, vol. 63(3), pages 397-421, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Patankar, Neha & Fell, Harrison G. & Rodrigo de Queiroz, Anderson & Curtis, John & DeCarolis, Joseph F., 2022. "Improving the representation of energy efficiency in an energy system optimization model," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Jimyung Kang & Jee-Hyong Lee, 2015. "Electricity Customer Clustering Following Experts’ Principle for Demand Response Applications," Energies, MDPI, vol. 8(10), pages 1-24, October.
    6. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    7. Rubén Pérez-Chacón & José M. Luna-Romera & Alicia Troncoso & Francisco Martínez-Álvarez & José C. Riquelme, 2018. "Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities," Energies, MDPI, vol. 11(3), pages 1-19, March.
    8. Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
    9. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    10. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    11. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    12. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    13. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    14. Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
    15. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    16. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    17. Belton, Cameron A. & Lunn, Peter D., 2020. "Smart choices? An experimental study of smart meters and time-of-use tariffs in Ireland," Energy Policy, Elsevier, vol. 140(C).
    18. Alejandro Blanco-M. & Karina Gibert & Pere Marti-Puig & Jordi Cusidó & Jordi Solé-Casals, 2018. "Identifying Health Status of Wind Turbines by Using Self Organizing Maps and Interpretation-Oriented Post-Processing Tools," Energies, MDPI, vol. 11(4), pages 1-21, March.
    19. Liu, Xiufeng & Nielsen, Per Sieverts, 2016. "A hybrid ICT-solution for smart meter data analytics," Energy, Elsevier, vol. 115(P3), pages 1710-1722.
    20. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.