IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v283y2021ics0306261920316482.html
   My bibliography  Save this article

Design and optimization of Stirling engines using soft computing methods: A review

Author

Listed:
  • Zare, Shahryar
  • Tavakolpour-saleh, A.R.
  • Aghahosseini, A.
  • Sangdani, M.H.
  • Mirshekari, Reza

Abstract

The need for energy converters with high thermal efficiency is a central issue in the field of renewable energies. So far, different technologies have been introduced for converting renewable energies into mechanical work. Stirling engines with an optimal design can be an appropriate choice for this aim. In this paper, the applications of soft computing methods in optimization and design of the Stirling engines are discussed. Until now, four popular soft computing approaches such as genetic algorithm, particle swarm optimization, fuzzy logic, and artificial neural network have been extensively applied to design and optimize the Stirling engines. Addressing the conducted works in this field, reveals that these soft computing methods can effectively meet the main concerns of the researchers. The performance of the Stirling engines in terms of power and efficiency can be promoted by optimizing their parameters via the soft computing methods. Moreover, the soft computing methods can be further employed to optimize the Stirling engines based on other objectives such as desired operating frequency, desired strokes of power and displacer pistons, and optimal locations of closed-loop poles of the system. On the other hand, combining these soft computing methods results in hybrid intelligent techniques that serves to predict other complex characteristics of these engines including torque, heat transfer, and damping coefficients. The hybrid techniques usually contain the artificial neural networks (or fuzzy logic) incorporating the evolutionary (or swarm intelligence) algorithms for designing, optimizing, and predicting the engine specifications.

Suggested Citation

  • Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316482
    DOI: 10.1016/j.apenergy.2020.116258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920316482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    2. Wu, Zhanghua & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Development of a 3kW double-acting thermoacoustic Stirling electric generator," Applied Energy, Elsevier, vol. 136(C), pages 866-872.
    3. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
    4. Cheng, Chin-Hsiang & Yang, Hang-Suin & Jhou, Bing-Yi & Chen, Yi-Cheng & Wang, Yu-Jen, 2013. "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, Elsevier, vol. 108(C), pages 466-476.
    5. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    6. Hooshang, M. & Askari Moghadam, R. & Alizadeh Nia, S. & Masouleh, M. Tale, 2015. "Optimization of Stirling engine design parameters using neural networks," Renewable Energy, Elsevier, vol. 74(C), pages 855-866.
    7. Motamedi, Mahmoud & Ahmadi, Rouhollah & Jokar, H., 2018. "A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation," Energy, Elsevier, vol. 155(C), pages 796-814.
    8. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    9. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    10. Lin, Boqiang & Jia, Zhijie, 2020. "Is emission trading scheme an opportunity for renewable energy in China? A perspective of ETS revenue redistributions," Applied Energy, Elsevier, vol. 263(C).
    11. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    12. Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
    13. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    14. Altin, Murat & Okur, Melih & Ipci, Duygu & Halis, Serdar & Karabulut, Halit, 2018. "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Elsevier, vol. 148(C), pages 855-865.
    15. Gheith, Ramla & Aloui, Fethi & Ben Nasrallah, Sassi, 2015. "Determination of adequate regenerator for a Gamma-type Stirling engine," Applied Energy, Elsevier, vol. 139(C), pages 272-280.
    16. Ahmadi, Mohammad H. & Hosseinzade, Hadi & Sayyaadi, Hoseyn & Mohammadi, Amir H. & Kimiaghalam, Farshad, 2013. "Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss," Renewable Energy, Elsevier, vol. 60(C), pages 313-322.
    17. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    18. Zeng, Yuan & Guo, Waiying & Wang, Hongmei & Zhang, Fengbin, 2020. "A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis," Applied Energy, Elsevier, vol. 262(C).
    19. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    20. Mohammad Hossein Ahmadi & Mohammad-Ali Ahmadi & Mehdi Mehrpooya & Marc A. Rosen, 2015. "Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine," Sustainability, MDPI, vol. 7(2), pages 1-13, February.
    21. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    22. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    23. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    24. Féniès, Gwyddyon & Formosa, Fabien & Ramousse, Julien & Badel, Adrien, 2015. "Double acting Stirling engine: Modeling, experiments and optimization," Applied Energy, Elsevier, vol. 159(C), pages 350-361.
    25. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    26. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
    27. Toghraie, Davood & Sina, Nima & Jolfaei, Niyusha Adavoodi & Hajian, Mehdi & Afrand, Masoud, 2019. "Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    28. Ahmadi, Rouhollah & Jokar, H. & Motamedi, Mahmoud, 2018. "A solar pressurizable liquid piston stirling engine: Part 2, optimization and development," Energy, Elsevier, vol. 164(C), pages 1200-1215.
    29. de la Bat, B.J.G. & Dobson, R.T. & Harms, T.M. & Bell, A.J., 2020. "Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator," Applied Energy, Elsevier, vol. 263(C).
    30. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    31. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
    32. Tavakolpour-Saleh, A.R. & Jokar, H., 2016. "Neural network-based control of an intelligent solar Stirling pump," Energy, Elsevier, vol. 94(C), pages 508-523.
    33. S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
    34. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    35. Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    36. Yang, Hang-Suin & Cheng, Chin-Hsiang, 2017. "Development of a beta-type Stirling engine with rhombic-drive mechanism using a modified non-ideal adiabatic model," Applied Energy, Elsevier, vol. 200(C), pages 62-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prajapati, Parth & Patel, Vivek & Raja, Bansi D. & Jouhara, Hussam, 2023. "Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle," Energy, Elsevier, vol. 274(C).
    2. Zare, Shahryar & Tavakolpour-Saleh, A.R. & Binazadeh, T., 2023. "Analytical investigation of free piston Stirling engines using practical stability method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Tavakolpour-Saleh, A.R. & Hamzavi, A. & Omidvar, A., 2021. "A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    2. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    3. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    4. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    5. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.
    6. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    7. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    8. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    9. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    10. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    11. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    12. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    13. Jiang, Han & Xi, Zhongli & A. Rahman, Anas & Zhang, Xiaoqing, 2020. "Prediction of output power with artificial neural network using extended datasets for Stirling engines," Applied Energy, Elsevier, vol. 271(C).
    14. Tavakolpour-Saleh, A.R. & Hamzavi, A. & Omidvar, A., 2021. "A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle," Energy, Elsevier, vol. 227(C).
    15. Chen, Pengfan & Yang, Peng & Liu, Liu & Liu, Yingwen, 2021. "Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 219(C).
    16. Zare, Shahryar & Tavakolpour-Saleh, A.R. & Binazadeh, T., 2023. "Analytical investigation of free piston Stirling engines using practical stability method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    17. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    18. Tavakolpour-Saleh, A.R., 2021. "A novel theorem on motion stability," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    20. Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.