IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920312253.html
   My bibliography  Save this article

Coronavirus pandemic reduced China’s CO2 emissions in short-term, while stimulus packages may lead to emissions growth in medium- and long-term

Author

Listed:
  • Wang, Qingqing
  • Lu, Mei
  • Bai, Zimeng
  • Wang, Ke

Abstract

Coronavirus has confined human activities, which caused significant reductions in coal, oil, and natural gas consumptions in China since January of 2020. We compile industrial, transport, and construction data to estimate the reductions in energy-related CO2 emissions during the first quarter of 2020 in China. Our results show that the fossil fuel related CO2 emissions decreased by 18.7% (182 MtCO2) in the first quarter of 2020 compared with the same period last year, including reductions of 12.2% (92 MtCO2) in industry sectors, 61.9% (62 MtCO2) in transport, and 23.9% (28 MtCO2) in construction. The figure in annual CO2 emission reductions is expected to limit with an estimate of 1.6%. However, to achieve the economic target for the 13th Five-Year-Plan, stimulus packages including investments in “shovel-ready” infrastructure projects issued by China’s central and local governments to response the COVID-19 may increase CO2 emissions with a higher speed in the coming years. Thus, sustainable stimulus packages are needed for accelerating China’s climate goals.

Suggested Citation

  • Wang, Qingqing & Lu, Mei & Bai, Zimeng & Wang, Ke, 2020. "Coronavirus pandemic reduced China’s CO2 emissions in short-term, while stimulus packages may lead to emissions growth in medium- and long-term," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312253
    DOI: 10.1016/j.apenergy.2020.115735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    2. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    3. Glen P. Peters & Gregg Marland & Corinne Le Quéré & Thomas Boden & Josep G. Canadell & Michael R. Raupach, 2012. "Rapid growth in CO2 emissions after the 2008–2009 global financial crisis," Nature Climate Change, Nature, vol. 2(1), pages 2-4, January.
    4. Ewen Callaway & David Cyranoski & Smriti Mallapaty & Emma Stoye & Jeff Tollefson, 2020. "The coronavirus pandemic in five powerful charts," Nature, Nature, vol. 579(7800), pages 482-483, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Environment

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halbrügge, Stephanie & Schott, Paul & Weibelzahl, Martin & Buhl, Hans Ulrich & Fridgen, Gilbert & Schöpf, Michael, 2021. "How did the German and other European electricity systems react to the COVID-19 pandemic?," Applied Energy, Elsevier, vol. 285(C).
    2. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    3. García, Sebastián & Parejo, Antonio & Personal, Enrique & Ignacio Guerrero, Juan & Biscarri, Félix & León, Carlos, 2021. "A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level," Applied Energy, Elsevier, vol. 287(C).
    4. Jiang, Shiqi & Lin, Xinyue & Qi, Lingli & Zhang, Yongqiang & Sharp, Basil, 2022. "The macro-economic and CO2 emissions impacts of COVID-19 and recovery policies in China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 981-996.
    5. Tuo Zhang & Maogang Tang, 2021. "The Impact of the COVID-19 Pandemic on Ambient Air Quality in China: A Quasi-Difference-in-Difference Approach," IJERPH, MDPI, vol. 18(7), pages 1-19, March.
    6. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    7. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    8. Peng Jiang & Jiří Jaromír Klemeš & Yee Van Fan & Xiuju Fu & Yong Mong Bee, 2021. "More Is Not Enough: A Deeper Understanding of the COVID-19 Impacts on Healthcare, Energy and Environment Is Crucial," IJERPH, MDPI, vol. 18(2), pages 1-22, January.
    9. Yang, Chuxiao & Hao, Yu & Irfan, Muhammad, 2021. "Energy consumption structural adjustment and carbon neutrality in the post-COVID-19 era," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 442-453.
    10. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    11. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    2. Agboola, Mary Oluwatoyin & Bekun, Festus Victor & Joshua, Udi, 2021. "Pathway to environmental sustainability: Nexus between economic growth, energy consumption, CO2 emission, oil rent and total natural resources rent in Saudi Arabia," Resources Policy, Elsevier, vol. 74(C).
    3. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
    4. Wenjing Zhang & Hengzhou Xu, 2017. "Exploring the causal relationship between carbon emissions and land urbanization quality in China using a panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1445-1462, August.
    5. Najia Saqib, 2021. "Energy Consumption and Economic Growth: Empirical Evidence from MENA Region," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 191-197.
    6. Yashar Tarverdi, 2018. "Aspects of Governance and $$\hbox {CO}_2$$ CO 2 Emissions: A Non-linear Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 167-194, January.
    7. Ratna Malisa Indriawati & Evi Gravitiani & Albertus Maqnus Soesilo & Malik Cahyadin, 2023. "Long-Term Investigation of Emissions and Economic Growth in Developed and Developing Countries: A Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 219-234, May.
    8. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    9. Liu, Hong & Wang, Chang & Wen, Fenghua, 2020. "Asymmetric transfer effects among real output, energy consumption, and carbon emissions in China," Energy, Elsevier, vol. 208(C).
    10. Adel Ben Youssef & Sabri Boubaker & Anis Omri, 2020. "Financial development and macroeconomic sustainability: modeling based on a modified environmental Kuznets curve," Climatic Change, Springer, vol. 163(2), pages 767-785, November.
    11. Chuimin Kong & Jijian Zhang & Albert Henry Ntarmah & Yusheng Kong & Hong Zhao, 2022. "Carbon Neutrality in the Middle East and North Africa: The Roles of Renewable Energy, Economic Growth, and Government Effectiveness," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
    12. Rifat Nahrin & Md. Hasanur Rahman & Shapan Chandra Majumder & Miguel Angel Esquivias, 2023. "Economic Growth and Pollution Nexus in Mexico, Colombia, and Venezuela (G-3 Countries): The Role of Renewable Energy in Carbon Dioxide Emissions," Energies, MDPI, vol. 16(3), pages 1-17, January.
    13. Ioannis Dokas & Minas Panagiotidis & Stephanos Papadamou & Eleftherios Spyromitros, 2022. "The Determinants of Energy and Electricity Consumption in Developed and Developing Countries: International Evidence," Energies, MDPI, vol. 15(7), pages 1-30, March.
    14. Pablo-Romero, María del P. & De Jesús, Josué, 2016. "Economic growth and energy consumption: The Energy-Environmental Kuznets Curve for Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1343-1350.
    15. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    16. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    17. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    18. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    19. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    20. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.

    More about this item

    Keywords

    China; CO2 emissions; COVID-19; Energy consumption;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.