IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300015.html
   My bibliography  Save this article

Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load

Author

Listed:
  • Hou, Hui
  • Xue, Mengya
  • Xu, Yan
  • Xiao, Zhenfeng
  • Deng, Xiangtian
  • Xu, Tao
  • Liu, Peng
  • Cui, Rongjian

Abstract

In order to investigate the impact of electric vehicles’ charging-discharging behaviour and demand side response resources on the economic operation of photovoltaic grid-connected microgrid system, a multi-objective model of microgrid economic dispatching with electric vehicles, transferable load and other distributed generations (diesel engines and energy storage unit) is proposed in this paper. The model takes the comprehensive operating cost of microgrid, the utilization rate of photovoltaic energy and the power fluctuation between the microgrid and main grid as objectives. Moreover, four different cases of microgrid economic dispatch considering electric vehicles and transferable load are put forward, which are electric vehicles’ orderly charging and discharging and transferable load participating in demand response in Case 1, electric vehicles’ charging randomly and the transferable load participating in demand response in Case 2, electric vehicles orderly charging and discharging and transferable load not participating in demand response in Case 3, electric vehicles’ charging randomly and the transferable load not participating in the demand response in Case 4. Multi-objective Seeker Optimization Algorithm and the method of fuzzy membership function are applied in this study to obtain the optimal results. The simulation analysis shows that the orderly charging-discharging behaviour of electric vehicles and the participation of transferable load can effectively improve the economic costs, efficiency and security of microgrid economic operation.

Suggested Citation

  • Hou, Hui & Xue, Mengya & Xu, Yan & Xiao, Zhenfeng & Deng, Xiangtian & Xu, Tao & Liu, Peng & Cui, Rongjian, 2020. "Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300015
    DOI: 10.1016/j.apenergy.2020.114489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    2. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    3. Hui Hou & Mengya Xue & Yan Xu & Jinrui Tang & Guorong Zhu & Peng Liu & Tao Xu, 2018. "Multiobjective Joint Economic Dispatching of a Microgrid with Multiple Distributed Generation," Energies, MDPI, vol. 11(12), pages 1-19, November.
    4. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    5. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    6. Haitao Liu & Yu Ji & Huaidong Zhuang & Hongbin Wu, 2015. "Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid," Energies, MDPI, vol. 8(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Castanho & Marcio Guerreiro & Ludmila Silva & Jony Eckert & Thiago Antonini Alves & Yara de Souza Tadano & Sergio Luiz Stevan & Hugo Valadares Siqueira & Fernanda Cristina Corrêa, 2022. "Method for SoC Estimation in Lithium-Ion Batteries Based on Multiple Linear Regression and Particle Swarm Optimization," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    3. Zhong Guan & Hui Wang & Zhi Li & Xiaohu Luo & Xi Yang & Jugang Fang & Qiang Zhao, 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm," Energies, MDPI, vol. 17(7), pages 1-20, April.
    4. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    5. Jiao, Feixiang & Zou, Yuan & Zhang, Xudong & Zhang, Bin, 2022. "Online optimal dispatch based on combined robust and stochastic model predictive control for a microgrid including EV charging station," Energy, Elsevier, vol. 247(C).
    6. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    7. Jiao, Feixiang & Ji, Chengda & Zou, Yuan & Zhang, Xudong, 2021. "Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and PV," Applied Energy, Elsevier, vol. 304(C).
    8. Jianying Li & Minsheng Yang & Yuexing Zhang & Jianqi Li & Jianquan Lu, 2023. "Micro-Grid Day-Ahead Stochastic Optimal Dispatch Considering Multiple Demand Response and Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-15, April.
    9. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    10. Qiwei Yang & Yantai Huang & Qiangqiang Zhang & Jinjiang Zhang, 2023. "A Bi-Level Optimization and Scheduling Strategy for Charging Stations Considering Battery Degradation," Energies, MDPI, vol. 16(13), pages 1-15, June.
    11. Yin, Linfei & Sun, Zhixiang, 2021. "Multi-layer distributed multi-objective consensus algorithm for multi-objective economic dispatch of large-scale multi-area interconnected power systems," Applied Energy, Elsevier, vol. 300(C).
    12. Mbungu, Nsilulu T. & Ismail, Ali A. & AlShabi, Mohammad & Bansal, Ramesh C. & Elnady, A. & Hamid, Abdul Kadir, 2023. "Control and estimation techniques applied to smart microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    13. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    14. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    15. Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Tomasz Sikorski, 2023. "Smart Management of Energy Storage in Microgrid: Adapting the Control Algorithm to Specific Industrial Facility Conditions," Sustainability, MDPI, vol. 15(21), pages 1-15, November.
    16. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    17. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Hou & Mengya Xue & Yan Xu & Jinrui Tang & Guorong Zhu & Peng Liu & Tao Xu, 2018. "Multiobjective Joint Economic Dispatching of a Microgrid with Multiple Distributed Generation," Energies, MDPI, vol. 11(12), pages 1-19, November.
    2. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    3. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    4. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    5. Sami M. Alshareef, 2022. "A Novel Smart Charging Method to Mitigate Voltage Fluctuation at Fast Charging Stations," Energies, MDPI, vol. 15(5), pages 1-25, February.
    6. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    7. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    8. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    9. Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    11. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    12. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    14. Monika Topel & Josefine Grundius, 2020. "Load Management Strategies to Increase Electric Vehicle Penetration—Case Study on a Local Distribution Network in Stockholm," Energies, MDPI, vol. 13(18), pages 1-16, September.
    15. Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
    16. Hossein Jokar & Taher Niknam & Moslem Dehghani & Ehsan Sheybani & Motahareh Pourbehzadi & Giti Javidi, 2023. "Efficient Microgrid Management with Meerkat Optimization for Energy Storage, Renewables, Hydrogen Storage, Demand Response, and EV Charging," Energies, MDPI, vol. 17(1), pages 1-23, December.
    17. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    18. Jesús Rodríguez-Molina & José-Fernán Martínez & Pedro Castillejo & Gregorio Rubio, 2017. "Development of Middleware Applied to Microgrids by Means of an Open Source Enterprise Service Bus," Energies, MDPI, vol. 10(2), pages 1-50, February.
    19. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    20. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.