IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v258y2020ics0306261919316873.html
   My bibliography  Save this article

Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters

Author

Listed:
  • Howlader, Abdul Motin
  • Sadoyama, Staci
  • Roose, Leon R.
  • Chen, Yan

Abstract

Large-scale deployments of variable renewable energy sources, such as photovoltaic (PV) systems, are increasing around the world. PV systems are a potential source of clean energy but they experience power intermittency and lack controllability. However, smart PV inverters provide grid-friendly functionalities that control the power output of PV systems. Power intermittency of PV systems causes major problems such as voltage fluctuations and frequency deviations in an electric power grid. Together with varying loads and other renewable distributed generations, the grid frequency and voltage become difficult to manage. A smart PV inverter allows for active power curtailment, volt-watt, and frequency-watt control systems to mitigate the voltage and frequency deviations for a smart power grid. Therefore, smart PV inverters can reduce the installation of voltage and frequency control devices in an electric power grid, which in turn can reduce installation and maintenance costs. Real-time analyses of active power curtailment, volt-watt control, frequency-watt control using smart PV inverters and their effects on voltage and frequency are presented in this paper. Power curtailment operations were executed in low and high PV penetration areas. From the experimental analyses, distributed voltage deviations can be mitigated using active power curtailment and volt-watt control systems, and the over-frequency of an electric power grid can be reduced using frequency-watt control method. Controller performances of smart PV inverters are also evaluated in this paper. The experimental analyses were executed in the Maui Advanced Solar Initiative Project.

Suggested Citation

  • Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Chen, Yan, 2020. "Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters," Applied Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919316873
    DOI: 10.1016/j.apenergy.2019.114000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    2. Teng, Fei & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Zeng, Pingliang & Strbac, Goran, 2017. "Challenges on primary frequency control and potential solution from EVs in the future GB electricity system," Applied Energy, Elsevier, vol. 194(C), pages 353-362.
    3. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    4. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    5. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Sepasi, Saeed, 2018. "Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study," Renewable Energy, Elsevier, vol. 127(C), pages 145-157.
    6. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems," Applied Energy, Elsevier, vol. 223(C), pages 172-187.
    7. Li, Jianwei & Xiong, Rui & Yang, Qingqing & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system," Applied Energy, Elsevier, vol. 201(C), pages 257-269.
    8. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    9. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    10. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    11. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Guanghao & Li, Shengtao, 2023. "Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation," Applied Energy, Elsevier, vol. 350(C).
    2. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    3. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    4. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    5. Jose Roberto Razo-Hernandez & Ismael Urbina-Salas & Guillermo Tapia-Tinoco & Juan Pablo Amezquita-Sanchez & Martin Valtierra-Rodriguez & David Granados-Lieberman, 2020. "Improved Performance of M-Class PMUs Based on a Magnitude Compensation Model for Wide Frequency Deviations," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
    6. Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    7. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).
    8. Song, Shaojian & Xiong, Hao & Lin, Yuzhang & Huang, Manyun & Wei, Zhinong & Fang, Zhi, 2022. "Robust three-phase state estimation for PV-Integrated unbalanced distribution systems," Applied Energy, Elsevier, vol. 322(C).
    9. García-Triviño, Pablo & Sarrias-Mena, Raúl & García-Vázquez, Carlos A. & Leva, Sonia & Fernández-Ramírez, Luis M., 2023. "Optimal online battery power control of grid-connected energy-stored quasi-impedance source inverter with PV system," Applied Energy, Elsevier, vol. 329(C).
    10. Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    11. Ali Q. Al-Shetwi & Walid K. Issa & Raed F. Aqeil & Taha Selim Ustun & Hussein M. K. Al-Masri & Khaled Alzaareer & Maher G. M. Abdolrasol & Majid A. Abdullah, 2022. "Active Power Control to Mitigate Frequency Deviations in Large-Scale Grid-Connected PV System Using Grid-Forming Single-Stage Inverters," Energies, MDPI, vol. 15(6), pages 1-21, March.
    12. Zedequias Machado Alves & Renata Mota Martins & Gustavo Marchesan & Ghendy Cardoso Junior, 2022. "Metaheuristic for the Allocation and Sizing of PV-STATCOMs for Ancillary Service Provision," Energies, MDPI, vol. 16(1), pages 1-16, December.
    13. Yin, Linfei & Zhao, Lulin, 2021. "Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids," Energy, Elsevier, vol. 225(C).
    14. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    15. Rehman, Obaid Ur & Khan, Shahid A. & Javaid, Nadeem, 2021. "Decoupled building-to-transmission-network for frequency support in PV systems dominated grid," Renewable Energy, Elsevier, vol. 178(C), pages 930-945.
    16. Zabihinia Gerdroodbari, Yasin & Khorasany, Mohsen & Razzaghi, Reza, 2022. "Dynamic PQ Operating Envelopes for prosumers in distribution networks," Applied Energy, Elsevier, vol. 325(C).
    17. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    18. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
    19. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Melo, S.P. & Brand, U. & Vogt, T. & Telle, J.S. & Schuldt, F. & Maydell, K.v., 2019. "Primary frequency control provided by hybrid battery storage and power-to-heat system," Applied Energy, Elsevier, vol. 233, pages 220-231.
    3. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    4. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    6. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    7. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    8. Shi, Jing & Xu, Ying & Liao, Meng & Guo, Shuqiang & Li, Yuanyuan & Ren, Li & Su, Rongyu & Li, Shujian & Zhou, Xiao & Tang, Yuejin, 2019. "Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet," Applied Energy, Elsevier, vol. 248(C), pages 1-17.
    9. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Reindl, Thomas & Srinivasan, Dipti, 2022. "Levelised cost of PV integration for distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Lee, J. & Bérard, Jean-Philippe & Razeghi, G. & Samuelsen, S., 2020. "Maximizing PV hosting capacity of distribution feeder microgrid," Applied Energy, Elsevier, vol. 261(C).
    11. Mariano G. Ippolito & Fabio Massaro & Rossano Musca & Gaetano Zizzo, 2021. "An Original Control Strategy of Storage Systems for the Frequency Stability of Autonomous Grids with Renewable Power Generation," Energies, MDPI, vol. 14(15), pages 1-22, July.
    12. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    14. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    15. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    16. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Frequency Stability Issues and Research Opportunities in Converter Dominated Power System," Energies, MDPI, vol. 14(14), pages 1-28, July.
    17. Gomez-Gonzalez, M. & Hernandez, J.C. & Vera, D. & Jurado, F., 2020. "Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve," Energy, Elsevier, vol. 191(C).
    18. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    19. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    20. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919316873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.