IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919316642.html
   My bibliography  Save this article

Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption

Author

Listed:
  • Chatzisideris, Marios D.
  • Ohms, Pernille K.
  • Espinosa, Nieves
  • Krebs, Frederik C.
  • Laurent, Alexis

Abstract

Recent economic developments have signalled that self-consumption of photovoltaics (PV)-generated electricity could be financially more attractive than exporting it to the grid in many countries. As an emerging PV technology, organic photovoltaics (OPV) have been recognized as potential bearer of economic and environmental gains. Yet, could OPV deliver a profitable investment and environmental impact reductions in the context of residential electricity self-consumption? Here, we conduct a study of unprecedented scoping that combines both economic analysis and life cycle assessment to gauge OPV self-consumption with or without battery storage for household settings. The upscaling of OPV technologies from pilot- to industrial scale was modelled, and we used the two contrasting cases of Denmark and Greece to identify potential patterns. Our economic results indicate that the addition of battery storage is not financially viable unless battery costs are reduced by more than 10% for Greece and 30% for Denmark. Furthermore, we identify OPV cost thresholds of 0.9 €/Wp for Denmark and 1.6 €/Wp for Greece, below which OPV-battery systems are more cost-effective than OPV systems without battery. Building on the economic analysis, we find that battery storage can improve the environmental performances of OPV systems under certain conditions on the battery costs, the capacity of the cost-optimal OPV-battery system, and the environmental impacts of the battery. Furthermore, the composition of the electricity grid mix in the country studied was found to be an important factor to determine where OPV self-consumption was environmentally beneficial. These findings can support energy policy-makers in their development of energy strategies as well as OPV technology developers, who should adopt a systemic approach and integrate battery storage and the balance of system within their development phases.

Suggested Citation

  • Chatzisideris, Marios D. & Ohms, Pernille K. & Espinosa, Nieves & Krebs, Frederik C. & Laurent, Alexis, 2019. "Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316642
    DOI: 10.1016/j.apenergy.2019.113977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    3. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    4. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    5. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    6. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    7. Wang, Qin & Xie, Yu & Soltani-Kordshuli, Firuze & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part I: Polymer solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 347-361.
    8. Holger C. Hesse & Rodrigo Martins & Petr Musilek & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2017. "Economic Optimization of Component Sizing for Residential Battery Storage Systems," Energies, MDPI, vol. 10(7), pages 1-19, June.
    9. Parra, David & Patel, Martin K., 2019. "The nature of combining energy storage applications for residential battery technology," Applied Energy, Elsevier, vol. 239(C), pages 1343-1355.
    10. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
    11. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    12. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    13. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    14. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helena Martín & Jordi de la Hoz & Arnau Aliana & Sergio Coronas & José Matas, 2021. "Analysis of the Net Metering Schemes for PV Self-Consumption in Denmark," Energies, MDPI, vol. 14(7), pages 1-22, April.
    2. Maria M. Symeonidou & Effrosyni Giama & Agis M. Papadopoulos, 2021. "Life Cycle Assessment for Supporting Dimensioning Battery Storage Systems in Micro-Grids for Residential Applications," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. de Souza Dutra, Michael David & da Conceição Júnior, Gerson & de Paula Ferreira, William & Campos Chaves, Matheus Roberto, 2020. "A customized transition towards smart homes: A fast framework for economic analyses," Applied Energy, Elsevier, vol. 262(C).
    4. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    5. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    2. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    3. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Luis Ramirez Camargo & Felix Nitsch & Katharina Gruber & Javier Valdes & Jane Wuth & Wolfgang Dorner, 2019. "Potential Analysis of Hybrid Renewable Energy Systems for Self-Sufficient Residential Use in Germany and the Czech Republic," Energies, MDPI, vol. 12(21), pages 1-17, November.
    5. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    6. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    7. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    8. Florian Klausmann & Anna-Lena Klingler, 2023. "Adaptive Control Strategy for Stationary Electric Battery Storage Systems with Reliable Peak Load Limitation at Maximum Self-Consumption of Locally Generated Energy," Energies, MDPI, vol. 16(9), pages 1-19, May.
    9. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    10. Olivella, Jordi & Domenech, Bruno & Calleja, Gema, 2021. "Potential of implementation of residential photovoltaics at city level: The case of London," Renewable Energy, Elsevier, vol. 180(C), pages 577-585.
    11. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    12. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    13. Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
    14. Susan Isaya Sun & Andrew Frederick Crossland & Andrew John Chipperfield & Richard George Andrew Wills, 2019. "An Emissions Arbitrage Algorithm to Improve the Environmental Performance of Domestic PV-Battery Systems," Energies, MDPI, vol. 12(3), pages 1-19, February.
    15. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    16. Ramirez Camargo, Luis & Nitsch, Felix & Gruber, Katharina & Dorner, Wolfgang, 2018. "Electricity self-sufficiency of single-family houses in Germany and the Czech Republic," Applied Energy, Elsevier, vol. 228(C), pages 902-915.
    17. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    18. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    19. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    20. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.