IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic93.html
   My bibliography  Save this article

An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system

Author

Listed:
  • Kwan, Trevor Hocksun
  • Shen, Yongting
  • Yao, Qinghe

Abstract

Although integrating the thermoelectric device (TED) to fuel cells (FC) is a promising way to improve the overall system’s output efficiency, its application to the micro-combined heat and power (μCHP) application requires an effective energy management strategy. Therefore, this paper aims to develop a real time energy management strategy (EMS) that intelligently allows the FC and TED to cooperatively minimize primary energy consumption and startup time while properly balancing energy in the energy storage components. This EMS is unique in that it includes TED’s mode of operation and FC and TED’s operating powers as controller parameters for a multi-input multi-output (MIMO) controller. As such, it regulates FC and water tank temperatures and the electric battery’s state of charge. The proposed overall system is tested under 3 dynamic simulations that include startup from ambient and satisfying the energy demands during a winter and summer day. Results demonstrate that adding the TED has reduced startup times by up to 4.45 and 1.77 times for the 1 kW FC stack and 50 kg water tank respectively. Primary energy consumption efficiencies also improved by up to 3.4% in winter and 5.6% in summer when the TED is included into the system.

Suggested Citation

  • Kwan, Trevor Hocksun & Shen, Yongting & Yao, Qinghe, 2019. "An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:93
    DOI: 10.1016/j.apenergy.2019.113318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aki, Hirohisa & Wakui, Tetsuya & Yokoyama, Ryohei & Sawada, Kento, 2018. "Optimal management of multiple heat sources in a residential area by an energy management system," Energy, Elsevier, vol. 153(C), pages 1048-1060.
    2. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    3. Kneiske, T.M. & Braun, M. & Hidalgo-Rodriguez, D.I., 2018. "A new combined control algorithm for PV-CHP hybrid systems," Applied Energy, Elsevier, vol. 210(C), pages 964-973.
    4. Oryshchyn, Danylo & Harun, Nor Farida & Tucker, David & Bryden, Kenneth M. & Shadle, Lawrence, 2018. "Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems," Applied Energy, Elsevier, vol. 228(C), pages 1953-1965.
    5. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Bidirectional operation of the thermoelectric device for active temperature control of fuel cells," Applied Energy, Elsevier, vol. 222(C), pages 410-422.
    6. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    7. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    8. Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
    9. Wang, Tongcai & Luan, Weiling & Wang, Wei & Tu, Shan-Tung, 2014. "Waste heat recovery through plate heat exchanger based thermoelectric generator system," Applied Energy, Elsevier, vol. 136(C), pages 860-865.
    10. Sanaye, Sepehr & Sarrafi, Ahmadreza, 2015. "Optimization of combined cooling, heating and power generation by a solar system," Renewable Energy, Elsevier, vol. 80(C), pages 699-712.
    11. Arandian, B. & Ardehali, M.M., 2017. "Effects of environmental emissions on optimal combination and allocation of renewable and non-renewable CHP technologies in heat and electricity distribution networks based on improved particle swarm ," Energy, Elsevier, vol. 140(P1), pages 466-480.
    12. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2016. "Power and mass optimization of the hybrid solar panel and thermoelectric generators," Applied Energy, Elsevier, vol. 165(C), pages 297-307.
    13. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    14. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    15. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2018. "A modelling study for the integration of a PEMFC micro-CHP in domestic building services design," Applied Energy, Elsevier, vol. 225(C), pages 85-97.
    16. Montecucco, A. & Siviter, J. & Knox, A.R., 2017. "Combined heat and power system for stoves with thermoelectric generators," Applied Energy, Elsevier, vol. 185(P2), pages 1336-1342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    2. Yadegari, Saeed & Abdi, Hamdi & Nikkhah, Saman, 2020. "Risk-averse multi-objective optimal combined heat and power planning considering voltage security constraints," Energy, Elsevier, vol. 212(C).
    3. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Kim, Youngki & Figueroa-Santos, Miriam & Prakash, Niket & Baek, Stanley & Siegel, Jason B. & Rizzo, Denise M., 2020. "Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    6. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).
    7. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    4. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    5. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Bidirectional operation of the thermoelectric device for active temperature control of fuel cells," Applied Energy, Elsevier, vol. 222(C), pages 410-422.
    6. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    7. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    8. Saufi Sulaiman, M. & Singh, B. & Mohamed, W.A.N.W., 2019. "Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle," Energy, Elsevier, vol. 179(C), pages 628-646.
    9. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    10. Di Marcoberardino, G. & Chiarabaglio, L. & Manzolini, G. & Campanari, S., 2019. "A Techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications," Applied Energy, Elsevier, vol. 239(C), pages 692-705.
    11. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Integrated TEG-TEC and variable coolant flow rate controller for temperature control and energy harvesting," Energy, Elsevier, vol. 159(C), pages 448-456.
    12. Dagang Lu & Fengyan Yi & Jianwei Li, 2022. "Optimization of the Adaptability of the Fuel Cell Vehicle Waste Heat Utilization Subsystem to Extreme Cold Environments," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    13. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    14. Fragiacomo, Petronilla & Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano, 2021. "Multi-objective optimization model for fuel cell-based poly-generation energy systems," Energy, Elsevier, vol. 237(C).
    15. Deasy, M.J. & Baudin, N. & O'Shaughnessy, S.M. & Robinson, A.J., 2017. "Simulation-driven design of a passive liquid cooling system for a thermoelectric generator," Applied Energy, Elsevier, vol. 205(C), pages 499-510.
    16. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    17. Kwan, Trevor Hocksun & Yao, Qinghe, 2019. "Preliminary study of integrating the vapor compression cycle with concentrated photovoltaic panels for supporting hydrogen production," Renewable Energy, Elsevier, vol. 134(C), pages 828-836.
    18. Lucrezia Manservigi & Mattia Cattozzo & Pier Ruggero Spina & Mauro Venturini & Hilal Bahlawan, 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users," Energies, MDPI, vol. 13(6), pages 1-21, March.
    19. Kneiske, T.M. & Niedermeyer, F. & Boelling, C., 2019. "Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench," Applied Energy, Elsevier, vol. 242(C), pages 121-137.
    20. Benday, Naman S. & Dryden, Daniel M. & Kornbluth, Kurt & Stroeve, Pieter, 2017. "A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions," Applied Energy, Elsevier, vol. 190(C), pages 764-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.