IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp22-31.html
   My bibliography  Save this article

Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula

Author

Listed:
  • Costa, Isabella
  • Rochedo, Pedro
  • Costa, Daniele
  • Ferreira, Paula
  • Araújo, Madalena
  • Schaeffer, Roberto
  • Szklo, Alexandre

Abstract

Carbon capture and geological storage (CCS) is a key technology for the World deep decarbonization. However, several challenges remain, such as the optimization of the carbon transportation infrastructures. This study proposes a methodology that applies the Kernel Density function in a geographic information system software and uses as input, CO2 emission sources data to identify emission clusters and emission high-density hotspots. The main goal of the proposed methodology is to perform a preliminary screening to identify areas of interest to install hubs when designing an optimized CO2 pipeline network. The methodology includes an estimation of capturable CO2 emissions and a density analysis that was based on Kernel Density function from the ArcGIS Desktop 10. The methodology was applied to the Iberian Peninsula CO2 industrial emission sources such as refineries, coal and natural gas power plants and cement factories (case study) and the results showed that in Portugal, CO2 industrial emissions reduction can reach up to 68% and, in Spain, up to 74% of CO2 industrial emissions, could be avoided. These are called capturable CO2 emissions which means that they are the portion of the total emissions that can be captured from industrial processes before they reach the atmosphere. Moreover, hubs were shown to be more viable when Portugal and Spain are considered together, therefore, carbon routes (pipeline network) in the future may consider an integrated route for the Iberian Peninsula.

Suggested Citation

  • Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:22-31
    DOI: 10.1016/j.apenergy.2018.11.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    2. Li, Jia & Liang, Xi & Cockerill, Tim, 2011. "Getting ready for carbon capture and storage through a ‘CCS (Carbon Capture and Storage) Ready Hub’: A case study of Shenzhen city in Guangdong province, China," Energy, Elsevier, vol. 36(10), pages 5916-5924.
    3. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    4. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    5. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    6. Roddy, Dermot J., 2012. "Development of a CO2 network for industrial emissions," Applied Energy, Elsevier, vol. 91(1), pages 459-465.
    7. Borba, Bruno S.M.C. & Lucena, André F.P. & Rathmann, Régis & Costa, Isabella V.L. & Nogueira, Larissa P.P. & Rochedo, Pedro R.R. & Castelo Branco, David A. & Júnior, Mauricio F.H. & Szklo, Alexandre &, 2012. "Energy-related climate change mitigation in Brazil: Potential, abatement costs and associated policies," Energy Policy, Elsevier, vol. 49(C), pages 430-441.
    8. Young, Jason & Park, Peter Y., 2014. "Hotzone identification with GIS-based post-network screening analysis," Journal of Transport Geography, Elsevier, vol. 34(C), pages 106-120.
    9. Perevertaylenko, Olexander Yu. & Gariev, Andriy O. & Damartzis, Theodoros & Tovazhnyanskyy, Leonid L. & Kapustenko, Petro O. & Arsenyeva, Olga P., 2015. "Searches of cost effective ways for amine absorption unit design in CO2 post-combustion capture process," Energy, Elsevier, vol. 90(P1), pages 105-112.
    10. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    11. Iea, 2010. "Carbon Capture and Storage: Model Regulatory Framework," IEA Energy Papers 2010/12, OECD Publishing.
    12. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    13. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    14. Rodrigo S. Iglesias & J. Marcelo Ketzer & Clarissa L. Melo & Roberto Heemann & Claudia X. Machado, 2015. "Carbon capture and geological storage in Brazil: an overview," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(2), pages 119-130, April.
    15. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
    16. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    17. Castelo Branco, David A. & Moura, Maria Cecilia P. & Szklo, Alexandre & Schaeffer, Roberto, 2013. "Emissions reduction potential from CO2 capture: A life-cycle assessment of a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1221-1235.
    18. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    19. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    20. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    3. Sun, Xiaolong & Alcalde, Juan & Bakhtbidar, Mahdi & Elío, Javier & Vilarrasa, Víctor & Canal, Jacobo & Ballesteros, Julio & Heinemann, Niklas & Haszeldine, Stuart & Cavanagh, Andrew & Vega-Maza, David, 2021. "Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain," Applied Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    2. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    3. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
    4. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    5. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    6. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    7. Joana Portugal-Pereira & Alexandre Koberle & André F. P. Lucena & Pedro R. R. Rochedo & Mariana Império & Ana Monteiro Carsalade & Roberto Schaeffer & Peter Rafaj, 2018. "Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil," Climatic Change, Springer, vol. 148(1), pages 293-309, May.
    8. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    9. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    10. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    11. Chengpeng Zhang & Pathegama Gamage Ranjith, 2018. "Experimental Study of Matrix Permeability of Gas Shale: An Application to CO 2 -Based Shale Fracturing," Energies, MDPI, vol. 11(4), pages 1-17, March.
    12. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    13. Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
    14. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    15. Peter Viebahn & Daniel Vallentin & Samuel Höller, 2015. "Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector," Energies, MDPI, vol. 8(12), pages 1-27, December.
    16. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Ahn, Yuchan & Han, Jeehoon, 2018. "Economic optimization of integrated network for utility supply and carbon dioxide mitigation with multi-site and multi-period demand uncertainties," Applied Energy, Elsevier, vol. 220(C), pages 723-734.
    18. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    19. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    20. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:22-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.