IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1685-1696.html
   My bibliography  Save this article

Integration of optimal operational dispatch and controller determined dynamics for microgrid survivability

Author

Listed:
  • Cattaneo, Alessandro
  • Madathil, Sreenath Chalil
  • Backhaus, Scott

Abstract

The reliability and resilience of the electrical power grids are essential to industry, economy and society. Microgrids that are able to island from the bulk electrical grid are one technology that may vastly improve electrical power service to customer loads. To achieve these improvements, an islanded microgrid should be able to operate through the loss of one of its generators without shedding electrical load. The loss of one generator will typically result in significant additional loads, including transient overloads, being placed on the remaining generators. There is also the possibility of additional generator tripping during these processes (i.e. cascading failures), which would likely result in the collapse of the microgrid. The novelty of our work consists in incorporating dynamic models of generator controllers into a microgrid optimal dispatch formulation with the ultimate goal to avoid operational failures and ensure the “survivability” of all-inverter microgrids to generator loss and transient overloads. The integration of generator and controller dynamics into the optimal dispatch formulation significantly increases the computational complexity. As we develop algorithms to restore speed of the optimization, our method can be readily implemented into a new operational strategy capable of an unprecedented level of reliability against generator contingencies. In addition, we quantitatively illustrate the effect of the survivability constraints on the microgrid operating costs and how the related trade-off between capital and operating costs should be taken into account at the design stage. The methods developed here also apply to the dispatch of off-grid microgrids.

Suggested Citation

  • Cattaneo, Alessandro & Madathil, Sreenath Chalil & Backhaus, Scott, 2018. "Integration of optimal operational dispatch and controller determined dynamics for microgrid survivability," Applied Energy, Elsevier, vol. 230(C), pages 1685-1696.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1685-1696
    DOI: 10.1016/j.apenergy.2018.08.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casisi, M. & Pinamonti, P. & Reini, M., 2009. "Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems," Energy, Elsevier, vol. 34(12), pages 2175-2183.
    2. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    3. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    4. Basu, Ashoke Kumar & Chowdhury, S.P. & Chowdhury, S. & Paul, S., 2011. "Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4348-4356.
    5. Obara, Shin’ya & Kawai, Masahito & Kawae, Osamu & Morizane, Yuta, 2013. "Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics," Applied Energy, Elsevier, vol. 102(C), pages 1343-1357.
    6. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    7. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    8. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    9. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    10. Strachan, Neil & Dowlatabadi, Hadi, 2002. "Distributed generation and distribution utilities," Energy Policy, Elsevier, vol. 30(8), pages 649-661, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobajas, Javier & Garcia-Torres, Felix & Roncero-Sánchez, Pedro & Vázquez, Javier & Bellatreche, Ladjel & Nieto, Emilio, 2022. "Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control," Applied Energy, Elsevier, vol. 306(PB).
    2. Nelson, James & Johnson, Nathan G. & Fahy, Kelsey & Hansen, Timothy A., 2020. "Statistical development of microgrid resilience during islanding operations," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    2. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    3. Chen, Yizhong & He, Li & Li, Jing, 2017. "Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty," Energy, Elsevier, vol. 130(C), pages 581-598.
    4. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    5. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    6. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    7. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    8. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    9. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    10. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
    11. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    12. Mathiesen, Patrick & Stadler, Michael & Kleissl, Jan & Pecenak, Zachary, 2021. "Techno-economic optimization of islanded microgrids considering intra-hour variability," Applied Energy, Elsevier, vol. 304(C).
    13. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    14. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    15. Scheller, Fabian & Burgenmeister, Balthasar & Kondziella, Hendrik & Kühne, Stefan & Reichelt, David G. & Bruckner, Thomas, 2018. "Towards integrated multi-modal municipal energy systems: An actor-oriented optimization approach," Applied Energy, Elsevier, vol. 228(C), pages 2009-2023.
    16. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    17. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
    18. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    19. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    20. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 428-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1685-1696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.