IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp189-198.html
   My bibliography  Save this article

Assessment of a novel technology for a stratified hot water energy storage – The water snake

Author

Listed:
  • Al-Habaibeh, Amin
  • Shakmak, Bubaker
  • Fanshawe, Simon

Abstract

The increasing demand to enhance sustainability and reduce carbon emission and pollution is attracting the attention for implementing and integrating diverse heating technologies such as heat pumps, solar energy, gas boilers, Combined Heat and Power (CHP), and electric heaters. Integrated technologies for heating include low and high temperature district heating, domestic small-scale applications and commercial large-scale buildings. Energy from flooded coalmines and water from other sources could also play a vital role in improving energy efficiency of heating and cooling applications. Stratified thermal storage are likely to significantly contribute to energy efficient heating, particularly when implementing a mixed-approach of diverse technologies. A stratified hot water tank, and naturally stratified reservoirs, are expected to play a central role in the integration of several heating technologies that operate efficiently at different levels of temperature with reduced cost. This paper presents a new innovative technology to improve stratification, namely ‘the water snake’, and an automated test rig to evaluate the new stratification method for energy utilisation using energy storage of hot water. An automated system is utilised to evaluate the performance. The results indicate that the test rig has been successful for the automated testing of the technology. Moreover, the results show that the water snake, as a new technology for stratification, is successful in minimising mixing and turbulence inside the thermal energy storage. The results prove that the technology could be implemented for a wide range of applications to enhance the efficiency of heating systems in buildings as well as district heating and cooling applications.

Suggested Citation

  • Al-Habaibeh, Amin & Shakmak, Bubaker & Fanshawe, Simon, 2018. "Assessment of a novel technology for a stratified hot water energy storage – The water snake," Applied Energy, Elsevier, vol. 222(C), pages 189-198.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:189-198
    DOI: 10.1016/j.apenergy.2018.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickinson, Ryan M. & Cruickshank, Cynthia A. & Harrison, Stephen J., 2013. "Charge and discharge strategies for a multi-tank thermal energy storage," Applied Energy, Elsevier, vol. 109(C), pages 366-373.
    2. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    3. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
    4. Qin, Frank G.F. & Yang, Xiaoping & Ding, Zhan & Zuo, Yuanzhi & Shao, Youyan & Jiang, Runhua & Yang, Xiaoxi, 2012. "Thermocline stability criterions in single-tanks of molten salt thermal energy storage," Applied Energy, Elsevier, vol. 97(C), pages 816-821.
    5. Knudsen, S. & Furbo, S., 2004. "Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems," Applied Energy, Elsevier, vol. 78(3), pages 257-272, July.
    6. Mawire, Ashmore, 2013. "Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging," Applied Energy, Elsevier, vol. 108(C), pages 459-465.
    7. Ievers, Simon & Lin, Wenxian, 2009. "Numerical simulation of three-dimensional flow dynamics in a hot water storage tank," Applied Energy, Elsevier, vol. 86(12), pages 2604-2614, December.
    8. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    9. Garnier, C. & Currie, J. & Muneer, T., 2009. "Integrated collector storage solar water heater: Temperature stratification," Applied Energy, Elsevier, vol. 86(9), pages 1465-1469, September.
    10. Fernández-Seara, José & Uhía, Francisco J. & Pardiñas, Ángel Á. & Bastos, Santiago, 2013. "Experimental analysis of an on demand external domestic hot water production system using four control strategies," Applied Energy, Elsevier, vol. 103(C), pages 85-96.
    11. Jack, M.W. & Suomalainen, K. & Dew, J.J.W. & Eyers, D., 2018. "A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control," Applied Energy, Elsevier, vol. 211(C), pages 104-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lago, Jesus & De Ridder, Fjo & Mazairac, Wiet & De Schutter, Bart, 2019. "A 1-dimensional continuous and smooth model for thermally stratified storage tanks including mixing and buoyancy," Applied Energy, Elsevier, vol. 248(C), pages 640-655.
    2. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    3. Zhengyue Zhu & Ruihao Bian & Yajun Deng & Bo Yu & Dongliang Sun, 2023. "Multi-Objective Optimization of Graded Thermal Storage System for Direct Steam Generation with Dish Concentrators," Energies, MDPI, vol. 16(5), pages 1-21, March.
    4. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    5. Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
    6. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    7. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).
    8. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
    9. Sun, Yang & Wang, Ligang & Xu, Cheng & Van herle, Jan & Maréchal, François & Yang, Yongping, 2020. "Enhancing the operational flexibility of thermal power plants by coupling high-temperature power-to-gas," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    2. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    3. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).
    4. Majumdar, Rudrodip & Saha, Sandip K. & Singh, Suneet, 2018. "Evaluation of transient characteristics of medium temperature solar thermal systems utilizing thermal stratification," Applied Energy, Elsevier, vol. 224(C), pages 69-85.
    5. Majumdar, Rudrodip & Saha, Sandip K., 2019. "Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank," Energy, Elsevier, vol. 178(C), pages 1-20.
    6. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    7. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    8. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    9. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    10. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    11. Advaith, S. & Parida, Dipti Ranjan & Aswathi, K.T. & Dani, Nikhil & Chetia, Utpal Kumar & Chattopadhyay, Kamanio & Basu, Saptarshi, 2021. "Experimental investigation on single-medium stratified thermal energy storage system," Renewable Energy, Elsevier, vol. 164(C), pages 146-155.
    12. Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2021. "Long-term performance of a solar water heating system with a novel variable-volume tank," Renewable Energy, Elsevier, vol. 164(C), pages 230-241.
    13. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
    14. Xun Yang & Yong Wang & Teng Xiong, 2017. "Numerical and Experimental Study on a Solar Water Heating System in Lhasa," Energies, MDPI, vol. 10(7), pages 1-13, July.
    15. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Mawire, Ashmore, 2013. "Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging," Applied Energy, Elsevier, vol. 108(C), pages 459-465.
    17. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Omu, Akomeno & Hsieh, Shanshan & Orehounig, Kristina, 2016. "Mixed integer linear programming for the design of solar thermal energy systems with short-term storage," Applied Energy, Elsevier, vol. 180(C), pages 313-326.
    19. Araújo, António & Silva, Rui, 2020. "Energy modeling of solar water heating systems with on-off control and thermally stratified storage using a fast computation algorithm," Renewable Energy, Elsevier, vol. 150(C), pages 891-906.
    20. Nwosu, P.N. & Agbiogwu, D., 2013. "Thermal analysis of a novel fibre-reinforced plastic solar hot water storage tank," Energy, Elsevier, vol. 60(C), pages 109-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:189-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.