IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp776-785.html
   My bibliography  Save this article

Deep learning hybrid method for islanding detection in distributed generation

Author

Listed:
  • Kong, Xiangrui
  • Xu, Xiaoyuan
  • Yan, Zheng
  • Chen, Sijie
  • Yang, Huoming
  • Han, Dong

Abstract

The increasing penetration of distributed energy brings significant uncertainty and noises to microgrid operation, which enlarge the difficulty of microgrid monitoring. For as much as the detection of islanding is prone to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of distributed generations (DGs) out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into the classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, a deep learning based algorithm is proposed to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the DGs mistakenly withdrawing from power grids can be avoided.

Suggested Citation

  • Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:776-785
    DOI: 10.1016/j.apenergy.2017.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fares, Robert L. & Webber, Michael E., 2015. "Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime," Applied Energy, Elsevier, vol. 137(C), pages 482-489.
    2. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
    3. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    4. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    5. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    6. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arash Abyaz & Habib Panahi & Reza Zamani & Hassan Haes Alhelou & Pierluigi Siano & Miadreza Shafie-khah & Mimmo Parente, 2019. "An Effective Passive Islanding Detection Algorithm for Distributed Generations," Energies, MDPI, vol. 12(16), pages 1-19, August.
    2. Yang, Zhaoming & Liu, Zhe & Zhou, Jing & Song, Chaofan & Xiang, Qi & He, Qian & Hu, Jingjing & Faber, Michael H. & Zio, Enrico & Li, Zhenlin & Su, Huai & Zhang, Jinjun, 2023. "A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks," Energy, Elsevier, vol. 278(C).
    3. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    4. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    5. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    6. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    7. Ming Li & Anqing Chen & Peixiong Liu & Wenbo Ren & Chenghao Zheng, 2024. "Multivariable Algorithm Using Signal-Processing Techniques to Identify Islanding Events in Utility Grid with Renewable Energy Penetration," Energies, MDPI, vol. 17(4), pages 1-26, February.
    8. Mohammad Abu Sarhan, 2023. "An Extensive Review and Analysis of Islanding Detection Techniques in DG Systems Connected to Power Grids," Energies, MDPI, vol. 16(9), pages 1-22, April.
    9. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi & Nikta Chireh, 2019. "A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine," Energies, MDPI, vol. 12(13), pages 1-18, June.
    10. Yan Xia & Feihong Yu & Xingzhong Xiong & Qinyuan Huang & Qijun Zhou, 2022. "A Novel Microgrid Islanding Detection Algorithm Based on a Multi-Feature Improved LSTM," Energies, MDPI, vol. 15(8), pages 1-24, April.
    11. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    12. Ahmadipour, Masoud & Hizam, Hashim & Othman, Mohammad Lutfi & Radzi, Mohd Amran Mohd & Murthy, Avinash Srikanta, 2018. "Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 231(C), pages 645-659.
    13. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    14. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    16. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    2. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    3. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    4. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    5. Laghari, J.A. & Mokhlis, H. & Karimi, M. & Bakar, A.H.A. & Mohamad, Hasmaini, 2015. "An islanding detection strategy for distribution network connected with hybrid DG resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 662-676.
    6. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    7. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    8. Jain, Sanjay & Kalambe, Shilpa & Agnihotri, Ganga & Mishra, Anuprita, 2017. "Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 363-385.
    9. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    10. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2020. "Optimal Placement and Sizing of DGs in Distribution Networks Using MLPSO Algorithm," Energies, MDPI, vol. 13(23), pages 1-25, November.
    11. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    14. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    15. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    16. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    17. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    18. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    19. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    20. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:776-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.