IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp1500-1512.html
   My bibliography  Save this article

Energy performance evaluation and application of an air treatment system for conditioning building spaces in tropics

Author

Listed:
  • Cui, X.
  • Mohan, B.
  • Islam, M.R.
  • Chou, S.K.
  • Chua, K.J.

Abstract

The present study attempts to reduce the supply of outdoor air in conditioning building spaces for energy saving while improving the indoor air quality. A hybrid air treatment system incorporating a cooling system is introduced for tropical climates. The air treatment system (ATS) comprises an ozone-based oxidation process and an air scrubbing device. The air purification process has been experimentally investigated. Experimental results demonstrated the feasibility of the proposed ATS to provide improved indoor air quality. A validated mathematical model has been employed to study the air cooling and dehumidification process through the cooling coil. The reduced outdoor air intake facilitates a higher chilled water supply temperature resulting in an improved chiller performance and reduction of cooling load. The energy consumption performance of the proposed hybrid ATS air-conditioning system has been evaluated for an office building experiencing tropical climatic conditions. The cooling load on a design day has demonstrated that the reduction of outdoor air intake enabled marked energy savings potential in terms of the cooling demand. By analysing the building performance based on tropical climatic data, an annual energy consumption saving of up to 64.6kWh/m2 can be achieved via the hybrid ATS air-conditioning system.

Suggested Citation

  • Cui, X. & Mohan, B. & Islam, M.R. & Chou, S.K. & Chua, K.J., 2017. "Energy performance evaluation and application of an air treatment system for conditioning building spaces in tropics," Applied Energy, Elsevier, vol. 204(C), pages 1500-1512.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1500-1512
    DOI: 10.1016/j.apenergy.2017.03.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    2. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Calautit, John Kaiser, 2014. "Passive energy recovery from natural ventilation air streams," Applied Energy, Elsevier, vol. 113(C), pages 127-140.
    3. Homod, Raad Z. & Sahari, Khairul Salleh Mohamed & Almurib, Haider A.F., 2014. "Energy saving by integrated control of natural ventilation and HVAC systems using model guide for comparison," Renewable Energy, Elsevier, vol. 71(C), pages 639-650.
    4. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    5. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    6. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    7. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
    8. Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard Barry & Tong, Zheming, 2016. "Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution," Scholarly Articles 27733689, Harvard University Department of Economics.
    9. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    10. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    11. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    12. Wong, L.T. & Mui, K.W., 2008. "A transient ventilation demand model for air-conditioned offices," Applied Energy, Elsevier, vol. 85(7), pages 545-554, July.
    13. Nath, Ranjit K. & Zain, M.F.M. & Jamil, M., 2016. "An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1184-1194.
    14. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    15. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    2. Sinha, Anshuman & Thakkar, Harshul & Rezaei, Fateme & Kawajiri, Yoshiaki & Realff, Matthew J., 2022. "Reduced building energy consumption by combined indoor CO2 and H2O composition control," Applied Energy, Elsevier, vol. 322(C).
    3. Gonçalo Marques & Jagriti Saini & Maitreyee Dutta & Pradeep Kumar Singh & Wei-Chiang Hong, 2020. "Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    4. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    5. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    6. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Chen, Yujiao & Tong, Zheming & Wu, Wentao & Samuelson, Holly & Malkawi, Ali & Norford, Leslie, 2019. "Achieving natural ventilation potential in practice: Control schemes and levels of automation," Applied Energy, Elsevier, vol. 235(C), pages 1141-1152.
    3. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    4. Yu, Bendong & Yang, Jichun & He, Wei & Qin, Minghui & Zhao, Xudong & Chen, Hongbing, 2019. "The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system," Energy, Elsevier, vol. 174(C), pages 420-435.
    5. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    6. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    7. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    8. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    9. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    10. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2017. "Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology," Applied Energy, Elsevier, vol. 193(C), pages 276-286.
    11. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    12. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    13. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    14. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    15. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Chen, Jianli & Brager, Gail S. & Augenbroe, Godfried & Song, Xinyi, 2019. "Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US," Applied Energy, Elsevier, vol. 235(C), pages 673-684.
    17. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    18. Liu, X.P. & Niu, J.L., 2014. "An optimal design analysis method for heat recovery devices in building applications," Applied Energy, Elsevier, vol. 129(C), pages 364-372.
    19. Nutkiewicz, Alex & Jain, Rishee K. & Bardhan, Ronita, 2018. "Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India," Applied Energy, Elsevier, vol. 231(C), pages 433-445.
    20. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1500-1512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.