IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v191y2017icp568-581.html
   My bibliography  Save this article

The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction

Author

Listed:
  • Rahmani, R.
  • Rahnejat, H.
  • Fitzsimons, B.
  • Dowson, D.

Abstract

Despite extensive research into alternative methods, the internal combustion engine is expected to remain as the primary source of vehicular propulsion for the foreseeable future. There are still significant opportunities for improving fuel efficiency, thus directly reducing the harmful emissions. Consequently, mitigation of thermal and frictional losses has gradually become a priority. The piston-cylinder system accounts for the major share of all the losses as well as emissions. Therefore, the need for an integrated approach, particularly of a predictive nature is essential. This paper addresses this issue, particularly the role of cylinder liner temperature, which affects both thermal and frictional performance of the piston-cylinder system. The study focuses on the top compression ring whose critical sealing function makes it a major source of frictional power loss and a critical component in guarding against further blow-by of harmful gasses. Such an integrated approach has not hitherto been reported in literature. The study shows that the cylinder liner temperature is critical in mitigating power loss as well as reducing Hydrocarbon (HC) and Nitrogen Oxide (NOx) emissions from the compression ring – cylinder liner conjunction. The results imply the existence of an optimum range for liner working temperature, independent of engine speed (at least in the studied cases) to minimise frictional losses. Combined with the study of NOx and HC emissions, the control of liner temperature can help to mitigate frictional power loss and reduce emissions.

Suggested Citation

  • Rahmani, R. & Rahnejat, H. & Fitzsimons, B. & Dowson, D., 2017. "The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction," Applied Energy, Elsevier, vol. 191(C), pages 568-581.
  • Handle: RePEc:eee:appene:v:191:y:2017:i:c:p:568-581
    DOI: 10.1016/j.apenergy.2017.01.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917301022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    2. Rakopoulos, C.D. & Kosmadakis, G.M. & Pariotis, E.G., 2010. "Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation," Applied Energy, Elsevier, vol. 87(5), pages 1612-1630, May.
    3. Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
    4. Dehghani Firoozabadi, M. & Shahbakhti, M. & Koch, C.R. & Jazayeri, S.A., 2013. "Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine," Applied Energy, Elsevier, vol. 110(C), pages 236-243.
    5. Damiani, Lorenzo & Repetto, Matteo & Prato, Alessandro Pini, 2014. "Improvement of powertrain efficiency through energy breakdown analysis," Applied Energy, Elsevier, vol. 121(C), pages 252-263.
    6. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    7. Molina, S. & Guardiola, C. & Martín, J. & García-Sarmiento, D., 2014. "Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 405-416.
    8. Wang, Yuesen & Liang, Xingyu & Shu, Gequn & Wang, Xu & Bao, Jingkuan & Liu, Changwen, 2014. "Effect of lubricating oil additive package on the characterization of diesel particles," Applied Energy, Elsevier, vol. 136(C), pages 682-691.
    9. Asprion, Jonas & Chinellato, Oscar & Guzzella, Lino, 2013. "A fast and accurate physics-based model for the NOx emissions of Diesel engines," Applied Energy, Elsevier, vol. 103(C), pages 221-233.
    10. Irimescu, Adrian & Merola, Simona Silvia & Tornatore, Cinzia & Valentino, Gerardo, 2015. "Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine," Applied Energy, Elsevier, vol. 157(C), pages 777-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Alshwawra & Ahmad Abo Swerih & Ahmad Sakhrieh & Friedrich Dinkelacker, 2022. "Structural Performance of Additively Manufactured Cylinder Liner—A Numerical Study," Energies, MDPI, vol. 15(23), pages 1-16, November.
    2. Guoxing Li & Fengshou Gu & Tie Wang & Xingchen Lu & Li Zhang & Chunfeng Zhang & Andrew Ball, 2017. "An Improved Lubrication Model between Piston Rings and Cylinder Liners with Consideration of Liner Dynamic Deformations," Energies, MDPI, vol. 10(12), pages 1-22, December.
    3. Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
    4. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    5. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    6. Cheng Liu & Yanjun Lu & Yongfang Zhang & Lujia Tang & Cheng Guo & Norbert Müller, 2019. "Investigation on the Frictional Performance of Surface Textured Ring-Deformed Liner Conjunction in Internal Combustion Engines," Energies, MDPI, vol. 12(14), pages 1-21, July.
    7. Dolatabadi, N. & Forder, M. & Morris, N. & Rahmani, R. & Rahnejat, H. & Howell-Smith, S., 2020. "Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction," Applied Energy, Elsevier, vol. 259(C).
    8. Rao, Xiang & Sheng, Chenxing & Guo, Zhiwei & Dai, Leyang & Yuan, Chengqing, 2023. "A novel finding on tribological, emission, and vibration performances of diesel engines linking to graphene-attapulgite lubricants additives under hot engine tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Wróblewski, Piotr, 2023. "Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic," Energy, Elsevier, vol. 264(C).
    10. Grzegorz Koszalka & Paweł Krzaczek, 2022. "Energy Losses Related to Ring Pack Wear in Gasoline Car Engine," Energies, MDPI, vol. 15(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    2. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    3. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    4. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    5. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    6. Rafael R. Maes & Geert Potters & Erik Fransen & Rowan Van Schaeren & Silvia Lenaerts, 2022. "Influence of Adding Low Concentration of Oxygenates in Mineral Diesel Oil and Biodiesel on the Concentration of NO, NO 2 and Particulate Matter in the Exhaust Gas of a One-Cylinder Diesel Generator," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    7. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    8. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    9. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    10. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    11. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    12. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    13. Seungha Lee & Youngbok Lee & Gyujin Kim & Kyoungdoug Min, 2017. "Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines," Energies, MDPI, vol. 10(3), pages 1-21, March.
    14. Lucia, Umberto & Grisolia, Giulia & Francia, Sabrina & Astori, Mariarosa, 2019. "Theoretical biophysical approach to cross-linking effects on eyes pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Du, Wei & Li, Yanjun & Shi, Jianxin & Sun, Baozhi & Wang, Chunhui & Zhu, Baitong, 2023. "Applying an improved particle swarm optimization algorithm to ship energy saving," Energy, Elsevier, vol. 263(PE).
    16. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    17. Briggs, Ian & Murtagh, Martin & Kee, Robert & McCulloug, Geoffrey & Douglas, Roy, 2017. "Sustainable non-automotive vehicles: The simulation challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 840-851.
    18. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    20. Yue, Chen & Han, Dong & Pu, Wenhao & He, Weifeng, 2016. "Parametric analysis of a vehicle power and cooling/heating cogeneration system," Energy, Elsevier, vol. 115(P1), pages 800-810.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:191:y:2017:i:c:p:568-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.