IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp570-580.html
   My bibliography  Save this article

Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil

Author

Listed:
  • Di Battista, D.
  • Cipollone, R.

Abstract

Carbon dioxide emission reduction is the most important challenge concerning on the road transportation. Stringent quantitative commitments have been set, both for automotive and for light and heavy duty vehicles. Future engine (and vehicle) technologies will consider a portfolio of new components, engine layouts, control strategies, integrated functions which will match also new comfort standards and fun to drive options, and complying fuel consumption savings.

Suggested Citation

  • Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:570-580
    DOI: 10.1016/j.apenergy.2015.10.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. d’Ambrosio, Stefano & Finesso, Roberto & Fu, Lezhong & Mittica, Antonio & Spessa, Ezio, 2014. "A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines," Applied Energy, Elsevier, vol. 130(C), pages 265-279.
    2. Baldi, Francesco & Theotokatos, Gerasimos & Andersson, Karin, 2015. "Development of a combined mean value–zero dimensional model and application for a large marine four-stroke Diesel engine simulation," Applied Energy, Elsevier, vol. 154(C), pages 402-415.
    3. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    4. Kumar, Suneel & Kumar Chauhan, Manish & Varun,, 2013. "Numerical modeling of compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 517-530.
    5. Molina, S. & Guardiola, C. & Martín, J. & García-Sarmiento, D., 2014. "Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 405-416.
    6. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    7. Maroteaux, Fadila & Saad, Charbel, 2015. "Combined mean value engine model and crank angle resolved in-cylinder modeling with NOx emissions model for real-time Diesel engine simulations at high engine speed," Energy, Elsevier, vol. 88(C), pages 515-527.
    8. Bova, Sergio & Castiglione, Teresa & Piccione, Rocco & Pizzonia, Francesco, 2015. "A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines," Applied Energy, Elsevier, vol. 143(C), pages 271-282.
    9. Korakianitis, T. & Imran, S. & Chung, N. & Ali, Hassan & Emberson, D.R. & Crookes, R.J., 2015. "Combustion-response mapping procedure for internal-combustion engine emissions," Applied Energy, Elsevier, vol. 156(C), pages 149-158.
    10. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
    11. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    12. Irimescu, Adrian & Merola, Simona Silvia & Tornatore, Cinzia & Valentino, Gerardo, 2015. "Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine," Applied Energy, Elsevier, vol. 157(C), pages 777-788.
    13. Dardiotis, Christos & Martini, Giorgio & Marotta, Alessandro & Manfredi, Urbano, 2013. "Low-temperature cold-start gaseous emissions of late technology passenger cars," Applied Energy, Elsevier, vol. 111(C), pages 468-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahmani, R. & Rahnejat, H. & Fitzsimons, B. & Dowson, D., 2017. "The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction," Applied Energy, Elsevier, vol. 191(C), pages 568-581.
    2. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    3. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    4. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    5. Khodabakhshian, Mohammad & Feng, Lei & Börjesson, Stefan & Lindgärde, Olof & Wikander, Jan, 2017. "Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization," Applied Energy, Elsevier, vol. 188(C), pages 652-671.
    6. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    7. Davide Di Battista & Roberto Cipollone, 2017. "Improving Engine Oil Warm Up through Waste Heat Recovery," Energies, MDPI, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    2. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Bo Liu & Fuwu Yan & Jie Hu & Richard Fiifi Turkson & Feng Lin, 2016. "Modeling and Multi-Objective Optimization of NO x Conversion Efficiency and NH 3 Slip for a Diesel Engine," Sustainability, MDPI, vol. 8(5), pages 1-13, May.
    4. Castiglione, Teresa & Pizzonia, Francesco & Piccione, Rocco & Bova, Sergio, 2016. "Detecting the onset of nucleate boiling in internal combustion engines," Applied Energy, Elsevier, vol. 164(C), pages 332-340.
    5. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    6. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    7. Rahmani, R. & Rahnejat, H. & Fitzsimons, B. & Dowson, D., 2017. "The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction," Applied Energy, Elsevier, vol. 191(C), pages 568-581.
    8. Yongming Feng & Haiyan Wang & Ruifeng Gao & Yuanqing Zhu, 2019. "A Zero-Dimensional Mixing Controlled Combustion Model for Real Time Performance Simulation of Marine Two-Stroke Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    10. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    11. Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
    12. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    13. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    14. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    15. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    16. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    17. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).
    18. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    19. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    20. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:570-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.