IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222028882.html
   My bibliography  Save this article

Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic

Author

Listed:
  • Wróblewski, Piotr

Abstract

Currently, numerous methods are introduced to reduce the loss of mechanical energy of the engine using various materials for anti-wear coatings. The paper presents the results of measurements of the motor torque for 18 multilayer AlN/CrN (20–30N2) and CrN/AlN (20–30N2) coatings. The coatings were applied in an Ar/N2 plasma environment with a variable N2 flow rate by reactive magnetron sputtering. The results were compiled for two oil temperatures, 80 and 100 °C, in the engine speed range from 800 to 4000 rpm. The test results show that highly hydrophilic coatings reduce the loss of mechanical energy of the engine in the lower engine speed range and in the oil environment with a high 4% soot content. Highly hydrophobic coatings enable the reduction of torque and resistance to movement of the engine for higher speed ranges, above 2000 rpm. This work is the first work that indicates the need to take into account hydrophilic and hydrophobic properties coatings in determining engine energy losses. The influence of these properties is much greater than the surface texture of the coatings, hardness, Young's modulus and other parameters of the coatings. It is a new look at the issue of reducing friction losses in the engine.

Suggested Citation

  • Wróblewski, Piotr, 2023. "Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222028882
    DOI: 10.1016/j.energy.2022.126002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tadeusz Dziubak, 2022. "Experimental Investigation of Possibilities to Improve Filtration Efficiency of Tangential Inlet Return Cyclones by Modification of Their Design," Energies, MDPI, vol. 15(11), pages 1-37, May.
    2. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    3. Tadeusz Dziubak, 2021. "Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter," Energies, MDPI, vol. 14(12), pages 1-28, June.
    4. Tadeusz Dziubak & Leszek Bąkała, 2021. "Computational and Experimental Analysis of Axial Flow Cyclone Used for Intake Air Filtration in Internal Combustion Engines," Energies, MDPI, vol. 14(8), pages 1-28, April.
    5. Dobrucali, Erinc, 2016. "The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine," Energy, Elsevier, vol. 103(C), pages 119-126.
    6. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    7. Rahmani, R. & Rahnejat, H. & Fitzsimons, B. & Dowson, D., 2017. "The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction," Applied Energy, Elsevier, vol. 191(C), pages 568-581.
    8. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).
    9. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    10. Basinger, M. & Reding, T. & Rodriguez-Sanchez, F.S. & Lackner, K.S. & Modi, V., 2010. "Durability testing modified compression ignition engines fueled with straight plant oil," Energy, Elsevier, vol. 35(8), pages 3204-3220.
    11. Karimi Abiyazani, Narges & Pirouzfar, Vahid & Su, Chia-Hung, 2022. "Enhancing engine power and torque and reducing exhaust emissions of blended fuels derived from gasoline-propanol-nano particles," Energy, Elsevier, vol. 241(C).
    12. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei, 2017. "Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle," Energy, Elsevier, vol. 123(C), pages 89-107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Dziubak, 2023. "Experimental Study of a PowerCore Filter Bed Operating in a Two-Stage System for Cleaning the Inlet Air of Internal Combustion Engines," Energies, MDPI, vol. 16(9), pages 1-21, April.
    2. Mirosław Karczewski & Grzegorz Szamrej, 2023. "Experimental Evaluation of the Effect of Replacing Diesel Fuel by CNG on the Emission of Harmful Exhaust Gas Components and Emission Changes in a Dual-Fuel Engine," Energies, MDPI, vol. 16(1), pages 1-32, January.
    3. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    4. Włodzimierz Kamiński, 2022. "Marine Slow-Speed Engines’ Cylinder Oil Lubrication Feed Rate Optimization in Real Operational Conditions," Energies, MDPI, vol. 15(22), pages 1-14, November.
    5. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    6. Yezhen Wu & Yuliang Xu & Jianwei Zhou & Zhen Wang & Haopeng Wang, 2020. "Research on Starting Control Method of New-Energy Vehicle Based on State Machine," Energies, MDPI, vol. 13(23), pages 1-16, November.
    7. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    8. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    9. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    10. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    11. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    12. Rao, Xiang & Sheng, Chenxing & Guo, Zhiwei & Dai, Leyang & Yuan, Chengqing, 2023. "A novel finding on tribological, emission, and vibration performances of diesel engines linking to graphene-attapulgite lubricants additives under hot engine tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Tadeusz Dziubak, 2021. "Theoretical and Experimental Studies of Uneven Dust Suction from a Multi-Cyclone Settling Tank in a Two-Stage Air Filter," Energies, MDPI, vol. 14(24), pages 1-29, December.
    14. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    15. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    16. Yi, Tao & Cheng, Xiaobin & Peng, Peng, 2022. "Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: A framework based on MCS and DBPSO," Energy, Elsevier, vol. 239(PC).
    17. Cheng Liu & Yanjun Lu & Yongfang Zhang & Lujia Tang & Cheng Guo & Norbert Müller, 2019. "Investigation on the Frictional Performance of Surface Textured Ring-Deformed Liner Conjunction in Internal Combustion Engines," Energies, MDPI, vol. 12(14), pages 1-21, July.
    18. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    19. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    20. Guoxing Li & Fengshou Gu & Tie Wang & Xingchen Lu & Li Zhang & Chunfeng Zhang & Andrew Ball, 2017. "An Improved Lubrication Model between Piston Rings and Cylinder Liners with Consideration of Liner Dynamic Deformations," Energies, MDPI, vol. 10(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222028882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.