IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v110y2013icp236-243.html
   My bibliography  Save this article

Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

Author

Listed:
  • Dehghani Firoozabadi, M.
  • Shahbakhti, M.
  • Koch, C.R.
  • Jazayeri, S.A.

Abstract

Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature.

Suggested Citation

  • Dehghani Firoozabadi, M. & Shahbakhti, M. & Koch, C.R. & Jazayeri, S.A., 2013. "Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine," Applied Energy, Elsevier, vol. 110(C), pages 236-243.
  • Handle: RePEc:eee:appene:v:110:y:2013:i:c:p:236-243
    DOI: 10.1016/j.apenergy.2013.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    2. Zeng, Xiangrui & Wang, Junmin, 2014. "A physics-based time-varying transport delay oxygen concentration model for dual-loop exhaust gas recirculation (EGR) engine air-paths," Applied Energy, Elsevier, vol. 125(C), pages 300-307.
    3. Rahmani, R. & Rahnejat, H. & Fitzsimons, B. & Dowson, D., 2017. "The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction," Applied Energy, Elsevier, vol. 191(C), pages 568-581.
    4. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    5. Bahri, Bahram & Shahbakhti, Mahdi & Kannan, Kaushik & Aziz, Azhar Abdul, 2016. "Identification of ringing operation for low temperature combustion engines," Applied Energy, Elsevier, vol. 171(C), pages 142-152.
    6. Neshat, Elaheh & Saray, Rahim Khoshbakhti & Hosseini, Vahid, 2016. "Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism," Applied Energy, Elsevier, vol. 179(C), pages 463-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:110:y:2013:i:c:p:236-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.