IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p126-135.html
   My bibliography  Save this article

Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production

Author

Listed:
  • Tsapekos, P.
  • Kougias, P.G.
  • Treu, L.
  • Campanaro, S.
  • Angelidaki, I.

Abstract

Mechanical pretreatment is considered to be a fast and easily applicable method to prepare the biomass for anaerobic digestion. In the present study, the effect of mechanical pretreatment on lignocellulosic silages biodegradability was elucidated in batch reactors. Moreover, co-digestion of the silages with pig manure in continuously fed biogas reactors was examined. Metagenomic analysis for determining the microbial communities in the pig manure digestion system was performed by analysing unassembled shotgun genomic sequences. A comparative analysis allowed to identify the microbial species firmly attached to the digested grass particles and to distinguish them from the planktonic microbes floating in the liquid medium. It was shown that the methane yield of ensiled grass was significantly increased by 12.3% due to mechanical pretreatment in batch experiments. Similarly, the increment of the methane yield in the co-digestion system reached 6.4%. Regarding the metagenomic study, species similar to Coprothermobacter proteolyticus and to Clostridium thermocellum, known for high proteolytic and cellulolytic activity respectively, were found firmly attached to the solid fraction of digested feedstock. Results from liquid samples revealed clear differences in microbial community composition, mainly dominated by Proteobacteria. The archaeal community was found in higher relative abundance in the liquid fraction of co-digestion experiment compared to the solid fraction. Finally, an unclassified Alkaliphilus sp. was found in high relative abundance in all samples.

Suggested Citation

  • Tsapekos, P. & Kougias, P.G. & Treu, L. & Campanaro, S. & Angelidaki, I., 2017. "Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production," Applied Energy, Elsevier, vol. 185(P1), pages 126-135.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:126-135
    DOI: 10.1016/j.apenergy.2016.10.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
    2. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    3. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    4. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    5. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    6. Pierie, F. & van Someren, C.E.J. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2015. "Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations," Applied Energy, Elsevier, vol. 160(C), pages 456-466.
    7. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    8. Hamelin, Lorie & Naroznova, Irina & Wenzel, Henrik, 2014. "Environmental consequences of different carbon alternatives for increased manure-based biogas," Applied Energy, Elsevier, vol. 114(C), pages 774-782.
    9. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syaichurrozi, Iqbal, 2018. "Biogas production from co-digestion Salvinia molesta and rice straw and kinetics," Renewable Energy, Elsevier, vol. 115(C), pages 76-86.
    2. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    3. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Zhou, Jialiang & Zhang, Yuanhui & Khoshnevisan, Benyamin & Duan, Na, 2021. "Meta-analysis of anaerobic co-digestion of livestock manure in last decade: Identification of synergistic effect and optimization synergy range," Applied Energy, Elsevier, vol. 282(PA).
    5. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    6. René Heller & Christina Brandhorst & Benedikt Hülsemann & Andreas Lemmer & Hans Oechsner, 2023. "Comparison of Different Mechanical Pretreatment Methods for the Anaerobic Digestion of Landscape Management Grass," Energies, MDPI, vol. 16(24), pages 1-26, December.
    7. Luz Breton-Deval & Ilse Salinas-Peralta & Jaime Santiago Alarcón Aguirre & Belkis Sulbarán-Rangel & Kelly Joel Gurubel Tun, 2020. "Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob," Energies, MDPI, vol. 14(1), pages 1-14, December.
    8. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    9. Mao, Chunlan & Wang, Yanbo & Wang, Xiaojiao & Ren, Guangxin & Yuan, Liuyan & Feng, Yongzhong, 2019. "Correlations between microbial community and C:N:P stoichiometry during the anaerobic digestion process," Energy, Elsevier, vol. 174(C), pages 687-695.
    10. Mohammed M.M. Osman & Xiaohou Shao & Deling Zhao & Amir K. Basheer & Hongmei Jin & Yingpeng Zhang, 2019. "Methane Production from Alginate-Extracted and Non-Extracted Waste of Laminaria japonica : Anaerobic Mono- and Synergetic Co-Digestion Effects on Yield," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    11. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    12. Weronika Cieciura-Włoch & Michał Binczarski & Jolanta Tomaszewska & Sebastian Borowski & Jarosław Domański & Piotr Dziugan & Izabela Witońska, 2019. "The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen," Energies, MDPI, vol. 12(17), pages 1-17, August.
    13. Yang, Ziyi & Sun, Hangyu & Kurbonova, Malikakhon & Zhou, Ling & Arhin, Samuel Gyebi & Papadakis, Vagelis G. & Goula, Maria A. & Liu, Guangqing & Zhang, Yi & Wang, Wen, 2022. "Simultaneous supplementation of magnetite and polyurethane foam carrier can reach a Pareto-optimal point to alleviate ammonia inhibition during anaerobic digestion," Renewable Energy, Elsevier, vol. 189(C), pages 104-116.
    14. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    15. Zhao, Weijie & Li, Yingwen & Song, Changhua & Liu, Sijie & Li, Xuehui & Long, Jinxing, 2017. "Intensified levulinic acid/ester production from cassava by one-pot cascade prehydrolysis and delignification," Applied Energy, Elsevier, vol. 204(C), pages 1094-1100.
    16. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    17. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2023. "Advancements in Giant Reed ( Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review," Energies, MDPI, vol. 16(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    2. Anna Lymperatou & Niels B. Rasmussen & Hariklia N. Gavala & Ioannis V. Skiadas, 2021. "Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects," Energies, MDPI, vol. 14(3), pages 1-16, February.
    3. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    4. Oreggioni, G.D. & Luberti, M. & Tassou, S.A., 2019. "Agricultural greenhouse CO2 utilization in anaerobic-digestion-based biomethane production plants: A techno-economic and environmental assessment and comparison with CO2 geological storage," Applied Energy, Elsevier, vol. 242(C), pages 1753-1766.
    5. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    6. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    7. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    8. Bułkowska, K. & Białobrzewski, I. & Klimiuk, E. & Pokój, T., 2018. "Kinetic parameters of volatile fatty acids uptake in the ADM1 as key factors for modeling co-digestion of silages with pig manure, thin stillage and glycerine phase," Renewable Energy, Elsevier, vol. 126(C), pages 163-176.
    9. Frank Pierie & Austin Dsouza & Christian E. J. Van Someren & René M. J. Benders & Wim J. Th. Van Gemert & Henri C. Moll, 2017. "Improving the Sustainability of Farming Practices through the Use of a Symbiotic Approach for Anaerobic Digestion and Digestate Processing," Resources, MDPI, vol. 6(4), pages 1-23, September.
    10. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    11. Du, Fang & Qu, Jibin & Hu, Qingxiu & Yuan, Xufeng & Yin, Guanhong & Wang, Li & Zou, Yajie, 2021. "Maximizing the value of Korshinsk peashrub branches by the integration of Pleurotus tuoliensis cultivation and anaerobic digestion of spent mushroom substrate," Renewable Energy, Elsevier, vol. 179(C), pages 679-686.
    12. Pierie, F. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "Lessons from spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands," Applied Energy, Elsevier, vol. 176(C), pages 233-244.
    13. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    14. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    15. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    16. Nizami, A.S. & Shahzad, K. & Rehan, M. & Ouda, O.K.M. & Khan, M.Z. & Ismail, I.M.I. & Almeelbi, T. & Basahi, J.M. & Demirbas, A., 2017. "Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy," Applied Energy, Elsevier, vol. 186(P2), pages 189-196.
    17. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    18. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    19. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    20. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:126-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.