IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp778-789.html
   My bibliography  Save this article

Improvements in the characterization of the efficiency degradation of water-to-water heat pumps under cyclic conditions

Author

Listed:
  • Fuentes, E.
  • Waddicor, D.A.
  • Salom, J.

Abstract

This paper presents a study on the characterization of the performance of a water-to-water heat pump of 40.5kW fixed heating capacity under different cycling conditions scenarios. Semi-virtual laboratory experiments were conducted to analyse the influence of inertia from 1.23 to 24.7L/kW on the efficiency of the heat pump operating at partial load. Different parameterizations in standards were compared to assess their ability to predict the energy efficiency degradation caused by cycling. Performance deterioration at part load was found to be highly dependent on inertia conditions, with non-negligible start-up parasitic effects detected for the heat pump under study, particularly for decreasing inertia. Results suggest that current standards for characterising the performance of systems at partial load, such as the European EN14825, should be reviewed to account for the influence of inertia on equipment performance and for the potential occurrence of start-up efficiency losses for water-to-water heat pumps. An expression is derived in this study for the start-up losses degradation coefficient Cd and a single parameterization accounting for different sources of efficiency losses is proposed, together with a simple method to determine degradation coefficients from reduced experimentation.

Suggested Citation

  • Fuentes, E. & Waddicor, D.A. & Salom, J., 2016. "Improvements in the characterization of the efficiency degradation of water-to-water heat pumps under cyclic conditions," Applied Energy, Elsevier, vol. 179(C), pages 778-789.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:778-789
    DOI: 10.1016/j.apenergy.2016.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Edwards, K.C. & Finn, D.P., 2015. "Generalised water flow rate control strategy for optimal part load operation of ground source heat pump systems," Applied Energy, Elsevier, vol. 150(C), pages 50-60.
    4. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    5. Man, Yi & Yang, Hongxing & Wang, Jinggang & Fang, Zhaohong, 2012. "In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone," Applied Energy, Elsevier, vol. 97(C), pages 913-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atienza-Márquez, Antonio & Domínguez Muñoz, Fernando & Fernández Hernández, Francisco & Cejudo López, José Manuel, 2022. "Domestic hot water production system in a hospital: Energy audit and evaluation of measures to boost the solar contribution," Energy, Elsevier, vol. 261(PB).
    2. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    3. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    4. García-Céspedes, J. & Arnó, G. & Herms, I. & de Felipe, J.J., 2020. "Characterisation of efficiency losses in ground source heat pump systems equipped with a double parallel stage: A case study," Renewable Energy, Elsevier, vol. 147(P2), pages 2761-2773.
    5. Jeffrey D. Spitler & Signhild Gehlin, 2019. "Measured Performance of a Mixed-Use Commercial-Building Ground Source Heat Pump System in Sweden," Energies, MDPI, vol. 12(10), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    2. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    3. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    4. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
    5. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    6. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    8. Edwards, K.C. & Finn, D.P., 2015. "Generalised water flow rate control strategy for optimal part load operation of ground source heat pump systems," Applied Energy, Elsevier, vol. 150(C), pages 50-60.
    9. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    10. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    11. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    12. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    13. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    14. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    15. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    16. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    17. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    18. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    19. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    20. Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:778-789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.