IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v140y2015icp210-223.html
   My bibliography  Save this article

Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model

Author

Listed:
  • Ruiz-Calvo, F.
  • De Rosa, M.
  • Acuña, J.
  • Corberán, J.M.
  • Montagud, C.

Abstract

The design and optimization of ground source heat pump systems require the ability to accurately reproduce the dynamic thermal behavior of the system on a short-term basis, specially in a system control perspective. In this context, modeling borehole heat exchangers (BHEs) is one of the most relevant and difficult tasks. Developing a model that is able to accurately reproduce the instantaneous response of a BHE while keeping a good agreement on a long-term basis is not straightforward. Thus, decoupling the short-term and long-term behavior will ease the design of a fast short-term focused model. This work presents a short-term BHE dynamic model, called Borehole-to-Ground (B2G), which is based on the thermal network approach, combined with a vertical discretization of the borehole.

Suggested Citation

  • Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.
  • Handle: RePEc:eee:appene:v:140:y:2015:i:c:p:210-223
    DOI: 10.1016/j.apenergy.2014.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquier, Philippe & Marcotte, Denis, 2012. "Short-term simulation of ground heat exchanger with an improved TRCM," Renewable Energy, Elsevier, vol. 46(C), pages 92-99.
    2. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    3. Michopoulos, [alpha]. & [Kappa]yriakis, [Nu]., 2009. "Predicting the fluid temperature at the exit of the vertical ground heat exchangers," Applied Energy, Elsevier, vol. 86(10), pages 2065-2070, October.
    4. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    5. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    6. Esen, Hikmet & Inalli, Mustafa & Esen, Yuksel, 2009. "Temperature distributions in boreholes of a vertical ground-coupled heat pump system," Renewable Energy, Elsevier, vol. 34(12), pages 2672-2679.
    7. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    8. Luo, Jin & Rohn, Joachim & Bayer, Manfred & Priess, Anna & Xiang, Wei, 2014. "Analysis on performance of borehole heat exchanger in a layered subsurface," Applied Energy, Elsevier, vol. 123(C), pages 55-65.
    9. Koohi-Fayegh, Seama & Rosen, Marc A., 2012. "Examination of thermal interaction of multiple vertical ground heat exchangers," Applied Energy, Elsevier, vol. 97(C), pages 962-969.
    10. Eslami-nejad, Parham & Bernier, Michel, 2012. "Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications," Applied Energy, Elsevier, vol. 98(C), pages 333-345.
    11. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    12. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    13. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2012. "An analysis of heat flow through a borehole heat exchanger validated model," Applied Energy, Elsevier, vol. 92(C), pages 523-533.
    14. Capozza, Antonio & De Carli, Michele & Zarrella, Angelo, 2013. "Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation," Applied Energy, Elsevier, vol. 107(C), pages 350-363.
    15. Sagia, Z. & Rakopoulos, C. & Kakaras, E., 2012. "Cooling dominated Hybrid Ground Source Heat Pump System application," Applied Energy, Elsevier, vol. 94(C), pages 41-47.
    16. Man, Yi & Yang, Hongxing & Wang, Jinggang & Fang, Zhaohong, 2012. "In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone," Applied Energy, Elsevier, vol. 97(C), pages 913-920.
    17. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zanchini, Enzo & Jahanbin, Aminhossein, 2018. "Simple equations to evaluate the mean fluid temperature of double-U-tube borehole heat exchangers," Applied Energy, Elsevier, vol. 231(C), pages 320-330.
    2. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    3. Claudia Naldi & Aminhossein Jahanbin & Enzo Zanchini, 2021. "A New Estimate of Sand and Grout Thermal Properties in the Sandbox Experiment for Accurate Validations of Borehole Simulation Codes," Energies, MDPI, vol. 14(4), pages 1-25, February.
    4. Chen, Jingping & Feng, Shaohang, 2020. "Evaluating a large geothermal absorber’s energy extraction and storage performance in a common geological condition," Applied Energy, Elsevier, vol. 279(C).
    5. Lee, C.K., 2016. "A modified three-dimensional numerical model for predicting the short-time-step performance of borehole ground heat exchangers," Renewable Energy, Elsevier, vol. 87(P1), pages 618-627.
    6. Choi, Wonjun & Kikumoto, Hideki & Ooka, Ryozo, 2022. "Probabilistic uncertainty quantification of borehole thermal resistance in real-world scenarios," Energy, Elsevier, vol. 254(PC).
    7. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    8. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    9. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    10. Aminhossein Jahanbin & Claudia Naldi & Enzo Zanchini, 2020. "Relation Between Mean Fluid Temperature and Outlet Temperature for Single U-Tube Boreholes," Energies, MDPI, vol. 13(4), pages 1-23, February.
    11. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    12. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    13. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    14. José M Corberán & Antonio Cazorla-Marín & Javier Marchante-Avellaneda & Carla Montagud, 2018. "Dual source heat pump, a high efficiency and cost-effective alternative for heating, cooling and DHW production," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(2), pages 161-176.
    15. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    16. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    17. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    18. Matt S. Mitchell & Jeffrey D. Spitler, 2020. "An Enhanced Vertical Ground Heat Exchanger Model for Whole-Building Energy Simulation," Energies, MDPI, vol. 13(16), pages 1-27, August.
    19. Pandey, Navdeep & Murugesan, K. & Thomas, H.R., 2017. "Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept," Applied Energy, Elsevier, vol. 190(C), pages 421-438.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Donghai & Gao, Penghui & Zhou, Yang & Wang, Yijiang & Zhou, Guoqing, 2020. "An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage," Renewable Energy, Elsevier, vol. 148(C), pages 1-21.
    2. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    3. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    4. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    5. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    6. Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
    7. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    8. Zhang, Linfeng & Huang, Gongsheng & Zhang, Quan & Wang, Jinggang, 2018. "An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system," Renewable Energy, Elsevier, vol. 126(C), pages 495-508.
    9. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    10. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    11. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    12. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    13. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    14. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    15. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    16. Zhang, Changxing & Wang, Yusheng & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2018. "Computational methods for ground thermal response of multiple borehole heat exchangers: A review," Renewable Energy, Elsevier, vol. 127(C), pages 461-473.
    17. Koohi-Fayegh, Seama & Rosen, Marc A., 2012. "Examination of thermal interaction of multiple vertical ground heat exchangers," Applied Energy, Elsevier, vol. 97(C), pages 962-969.
    18. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    19. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    20. Guo, Y. & Huang, G. & Liu, W.V., 2023. "A new semi-analytical solution addressing varying heat transfer rates for U-shaped vertical borehole heat exchangers in multilayered ground," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:140:y:2015:i:c:p:210-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.