IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v171y2016icp120-132.html
   My bibliography  Save this article

Cycle-to-cycle variations in diesel engines

Author

Listed:
  • Kyrtatos, Panagiotis
  • Brückner, Clemens
  • Boulouchos, Konstantinos

Abstract

Cyclic variations in diesel engines are undesirable since they are understood to lead to lower efficiency and higher emissions, as well as power output limitations. This work aims to improve the understanding of the source of cycle-to-cycle variations of in-cylinder pressure in conventional diesel engines and the implications these have for measurement and simulation best practices. Measurements in a single-cylinder diesel engine employing single injection, under low temperature end-of-compression conditions and variable charge O2 concentration have shown that in-cylinder pressure fluctuations – i.e. excitation of the first radial mode of vibration of the cylinder gases, caused in single cycles by the rapid premixed combustion – result in increases in diffusion heat release rate. The average intensity of the pressure fluctuations was shown to increase with increasing amount and reactivity of the premixed combustion. This results in higher cycle-to-cycle variations under these conditions, revealed by greater cyclic deviations of maximum pressure.

Suggested Citation

  • Kyrtatos, Panagiotis & Brückner, Clemens & Boulouchos, Konstantinos, 2016. "Cycle-to-cycle variations in diesel engines," Applied Energy, Elsevier, vol. 171(C), pages 120-132.
  • Handle: RePEc:eee:appene:v:171:y:2016:i:c:p:120-132
    DOI: 10.1016/j.apenergy.2016.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    2. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    3. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    4. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    5. Zhang, H.G. & Han, X.J. & Yao, B.F. & Li, G.X., 2013. "Study on the effect of engine operation parameters on cyclic combustion variations and correlation coefficient between the pressure-related parameters of a CNG engine," Applied Energy, Elsevier, vol. 104(C), pages 992-1002.
    6. Al-Sarkhi, A. & Jaber, J.O. & Probert, S.D., 2006. "Efficiency of a Miller engine," Applied Energy, Elsevier, vol. 83(4), pages 343-351, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.
    2. Arkadiusz Jamrozik & Wojciech Tutak & Renata Gnatowska & Łukasz Nowak, 2019. "Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine," Energies, MDPI, vol. 12(6), pages 1-17, March.
    3. Cheng, Qiang & Ahmad, Zeeshan & Kaario, Ossi & Martti, Larmi, 2019. "Cycle-to-cycle variations of dual-fuel combustion in an optically accessible engine," Applied Energy, Elsevier, vol. 254(C).
    4. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    5. Zhang, Qinghui & Hao, Zhiyong & Zheng, Xu & Yang, Wenying, 2017. "Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions," Applied Energy, Elsevier, vol. 195(C), pages 52-66.
    6. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    7. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.
    8. Yi Lu & Zhe Zuo & Zhenyu Zhang & Changlu Zhao & Fujun Zhang, 2018. "On the Effect of a Rail Pressure Error State Observer in Reducing Fuel Injection Cycle-to-Cycle Variation in an Opposed-Piston Compression Ignition Engine," Energies, MDPI, vol. 11(7), pages 1-16, July.
    9. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
    10. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
    2. Cheng, Qiang & Ahmad, Zeeshan & Kaario, Ossi & Martti, Larmi, 2019. "Cycle-to-cycle variations of dual-fuel combustion in an optically accessible engine," Applied Energy, Elsevier, vol. 254(C).
    3. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    4. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    5. Zhao, Zhenfeng & Wu, Dan & Zhang, Zhenyu & Zhang, Fujun & Zhao, Changlu, 2014. "Experimental investigation of the cycle-to-cycle variations in combustion process of a hydraulic free-piston engine," Energy, Elsevier, vol. 78(C), pages 257-265.
    6. Chen, Yulin & Dong, Guangyu & Mack, J. Hunter & Butt, Ryan H. & Chen, Jyh-Yuan & Dibble, Robert W., 2016. "Cyclic variations and prior-cycle effects of ion current sensing in an HCCI engine: A time-series analysis," Applied Energy, Elsevier, vol. 168(C), pages 628-635.
    7. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    8. Hountalas, D.T. & Papagiannakis, R.G. & Zovanos, G. & Antonopoulos, A., 2014. "Comparative evaluation of various methodologies to account for the effect of load variation during cylinder pressure measurement of large scale two-stroke diesel engines," Applied Energy, Elsevier, vol. 113(C), pages 1027-1042.
    9. Duan, Xiongbo & Liu, Jingping & Yuan, Zhipeng & Guo, Genmiao & Liu, Qi & Tang, Qijun & Deng, Banglin & Guan, Jinhuan, 2018. "Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend," Energy, Elsevier, vol. 165(PB), pages 455-470.
    10. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    11. Mikalsen, R. & Wang, Y.D. & Roskilly, A.P., 2009. "A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications," Applied Energy, Elsevier, vol. 86(6), pages 922-927, June.
    12. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    13. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    14. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    15. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    16. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    17. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    18. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    19. An, Yanzhao & Raman, Vallinayagam & Tang, Qinglong & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions," Applied Energy, Elsevier, vol. 235(C), pages 56-67.
    20. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:120-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.