IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v171y2016icp1-11.html
   My bibliography  Save this article

Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

Author

Listed:
  • Yan, Chengchu
  • Shi, Wenxing
  • Li, Xianting
  • Zhao, Yang

Abstract

Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not explored sufficiently. This paper presents a compound cold storage system that combines a heat pipe-based seasonal ice storage system with a chilled water storage system. The seasonal ice storage system automatically charges winter cold energy in the form of ice. In summer, the stored ice is extracted for cooling, and then the melting ice is used as a chilling medium for chilled water storage. Design optimization of the seasonal ice storage system and the compound storage system is addressed, including the sizes of heat pipes, the configuration and volume of the cold storage tank and the chiller capacity. A case study is conducted to demonstrate the design and the application of the proposed system in a real building in Beijing. Results show that the appropriate combination of the two types of cold storage can greatly improve the applicability of the seasonal cold storage and reduce the life-cycle cost of a building cooling system by 40%.

Suggested Citation

  • Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
  • Handle: RePEc:eee:appene:v:171:y:2016:i:c:p:1-11
    DOI: 10.1016/j.apenergy.2016.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Persson, Johannes & Westermark, Mats, 2013. "Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective," Applied Energy, Elsevier, vol. 112(C), pages 975-980.
    2. Paksoy, H.O & Andersson, O & Abaci, S & Evliya, H & Turgut, B, 2000. "Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer," Renewable Energy, Elsevier, vol. 19(1), pages 117-122.
    3. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    4. Vadiee, Amir & Martin, Viktoria, 2013. "Thermal energy storage strategies for effective closed greenhouse design," Applied Energy, Elsevier, vol. 109(C), pages 337-343.
    5. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
    6. Singh, Randeep & Mochizuki, Masataka & Mashiko, Koichi & Nguyen, Thang, 2011. "Heat pipe based cold energy storage systems for datacenter energy conservation," Energy, Elsevier, vol. 36(5), pages 2802-2811.
    7. Zhang, Liang & Xu, Peng & Mao, Jiachen & Tang, Xu & Li, Zhengwei & Shi, Jianguo, 2015. "A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study," Applied Energy, Elsevier, vol. 156(C), pages 213-222.
    8. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    9. Hamada, Yasuhiro & Nakamura, Makoto & Kubota, Hideki, 2007. "Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy," Applied Energy, Elsevier, vol. 84(2), pages 117-134, February.
    10. Kranz, Stefan & Frick, Stephanie, 2013. "Efficient cooling energy supply with aquifer thermal energy storages," Applied Energy, Elsevier, vol. 109(C), pages 321-327.
    11. DeForest, Nicholas & Mendes, Gonçalo & Stadler, Michael & Feng, Wei & Lai, Judy & Marnay, Chris, 2014. "Optimal deployment of thermal energy storage under diverse economic and climate conditions," Applied Energy, Elsevier, vol. 119(C), pages 488-496.
    12. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    2. Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    3. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
    4. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).
    5. Jannesari, Hamid & Abdollahi, Naeim, 2017. "Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems," Applied Energy, Elsevier, vol. 189(C), pages 369-384.
    6. Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
    7. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    8. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    9. Luigi Mongibello & Giorgio Graditi, 2016. "Cold Storage for a Single-Family House in Italy," Energies, MDPI, vol. 9(12), pages 1-16, December.
    10. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Kan, Guangyuan & Zhang, Mengjie & Liang, Ke & Wang, Hao & Jiang, Yunzhong & Li, Jiren & Ding, Liuqian & He, Xiaoyan & Hong, Yang & Zuo, Depeng & Bao, Zhenxin & Li, Chaochao, 2018. "Improving water quantity simulation & forecasting to solve the energy-water-food nexus issue by using heterogeneous computing accelerated global optimization method," Applied Energy, Elsevier, vol. 210(C), pages 420-433.
    12. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    13. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    14. Pio Alessandro Lombardi & Kranthi Ranadheer Moreddy & André Naumann & Przemyslaw Komarnicki & Carmine Rodio & Sergio Bruno, 2019. "Data Centers as Active Multi-Energy Systems for Power Grid Decarbonization: A Technical and Economic Analysis," Energies, MDPI, vol. 12(21), pages 1-14, November.
    15. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    16. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    18. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    2. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    3. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    5. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
    6. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    7. Yapparova, Alina & Matthäi, Stephan & Driesner, Thomas, 2014. "Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow," Energy, Elsevier, vol. 76(C), pages 1011-1018.
    8. Chen, Shuqin & Zhu, Yipan & Chen, Yue & Liu, Wei, 2020. "Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate," Applied Energy, Elsevier, vol. 277(C).
    9. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    10. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    11. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    12. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
    13. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    14. Dannemand, Mark & Dragsted, Janne & Fan, Jianhua & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures," Applied Energy, Elsevier, vol. 169(C), pages 72-80.
    15. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    16. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    17. Woong Ko & Jinho Kim, 2019. "Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power," Energies, MDPI, vol. 12(2), pages 1-20, January.
    18. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Bastien, Diane & Athienitis, Andreas K., 2018. "Passive thermal energy storage, part 1: Design concepts and metrics," Renewable Energy, Elsevier, vol. 115(C), pages 1319-1327.
    20. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.