IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp748-758.html
   My bibliography  Save this article

A signal-based method for fast PEMFC diagnosis

Author

Listed:
  • Pahon, E.
  • Yousfi Steiner, N.
  • Jemei, S.
  • Hissel, D.
  • Moçoteguy, P.

Abstract

This paper deals with a novel signal-based method for fault diagnosis of a proton exchange membrane fuel cell (PEMFC). Thanks to an in-lab test bench used for the experimental tests, various parameters can be recorded as electrical or fluidic measurements. The chosen input signal for the diagnosis uses no additional expensive and no intrusive sensors specifically dedicated for the diagnosis task. It uses insofar only the already existing sensors on the system. This paper focuses on the detection and identification of a high air stoichiometry (HAS) fault. The wavelet transform (WT) and more precisely the energy contained in each detail of the wavelet decomposition is used to diagnose quickly an oversupply of air to the fuel cell system. Finally, some experimental results are presented according to different input signals, in order to prove the efficiency of the patented method.

Suggested Citation

  • Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:748-758
    DOI: 10.1016/j.apenergy.2015.12.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barelli, L. & Barluzzi, E. & Bidini, G. & Bonucci, F., 2012. "Cylinders diagnosis system of a 1MW internal combustion engine through vibrational signal processing using DWT technique," Applied Energy, Elsevier, vol. 92(C), pages 44-50.
    2. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    3. da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.
    4. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    5. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    6. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Li, Yongdong, 2015. "Fault detection and isolation for Polymer Electrolyte Membrane Fuel Cell systems by analyzing cell voltage generated space," Applied Energy, Elsevier, vol. 148(C), pages 260-272.
    7. Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
    8. Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
    9. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    10. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    11. Bonvini, Marco & Sohn, Michael D. & Granderson, Jessica & Wetter, Michael & Piette, Mary Ann, 2014. "Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques," Applied Energy, Elsevier, vol. 124(C), pages 156-166.
    12. Yan, Wei-Mon & Wang, Xiao-Dong & Lee, Duu-Jong & Zhang, Xin-Xin & Guo, Yi-Fan & Su, Ay, 2011. "Experimental study of commercial size proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 88(1), pages 392-396, January.
    13. Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaping Xie & Chao Wang & Wei Zhu & Hao Yuan, 2021. "A Multi-Stage Fault Diagnosis Method for Proton Exchange Membrane Fuel Cell Based on Support Vector Machine with Binary Tree," Energies, MDPI, vol. 14(20), pages 1-22, October.
    2. Polverino, Pierpaolo & Bove, Giovanni & Sorrentino, Marco & Pianese, Cesare & Beretta, Davide, 2019. "Advancements on scaling-up simulation of Proton Exchange Membrane Fuel Cells impedance through Buckingham Pi theorem," Applied Energy, Elsevier, vol. 249(C), pages 245-252.
    3. Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
    4. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    5. Lu, Shibao & Ye, Weiwei & Xue, Yangang & Tang, Yao & Guo, Min, 2020. "Dynamic feature information extraction using the special empirical mode decomposition entropy value and index energy," Energy, Elsevier, vol. 193(C).
    6. Logan Battrell & Aubree Trunkle & Erica Eggleton & Lifeng Zhang & Ryan Anderson, 2017. "Quantifying Cathode Water Transport via Anode Relative Humidity Measurements in a Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 10(8), pages 1-16, August.
    7. Feng Han & Ying Tian & Qiang Zou & Xin Zhang, 2020. "Research on the Fault Diagnosis of a Polymer Electrolyte Membrane Fuel Cell System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    8. Shin, Donghoon & Yoo, Seungryeol, 2023. "Diagnostic method for PEM fuel cell states using probability Distribution-Based loss component analysis for voltage loss decomposition," Applied Energy, Elsevier, vol. 330(PB).
    9. Chen, Huicui & Zhao, Xin & Qu, Bingwang & Zhang, Tong & Pei, Pucheng & Li, Congxin, 2018. "An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 232(C), pages 26-35.
    10. Yu Zang & Wei Shangguan & Baigen Cai & Huashen Wang & Michael G Pecht, 2019. "Methods for fault diagnosis of high-speed railways: A review," Journal of Risk and Reliability, , vol. 233(5), pages 908-922, October.
    11. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    12. Pedro Andrade & Khaled Laadjal & Adérito Neto Alcaso & Antonio J. Marques Cardoso, 2024. "A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues," Energies, MDPI, vol. 17(3), pages 1-45, January.
    13. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    14. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    15. Pang, Ran & Zhang, Caizhi & Dai, Haifeng & Bai, Yunfeng & Hao, Dong & Chen, Jinrui & Zhang, Bin, 2022. "Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters," Applied Energy, Elsevier, vol. 305(C).
    16. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    2. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    3. Oh, Hwanyeong & Park, Jaeman & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2015. "Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 149(C), pages 186-193.
    4. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    5. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    6. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    7. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    8. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.
    9. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    10. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    11. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    12. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    13. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    14. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    15. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2020. "Safe and Efficient Polymer Electrolyte Membrane Fuel Cell Control Using Successive Linearization Based Model Predictive Control Validated on Real Vehicle Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
    16. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    17. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    18. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    19. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    20. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:748-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.