IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp68-82.html
   My bibliography  Save this article

Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes

Author

Listed:
  • Mu, Mulan
  • Basheer, P.A.M.
  • Sha, Wei
  • Bai, Yun
  • McNally, Tony

Abstract

Shape stabilised phase change materials (SSPCMs) based on a high density poly(ethylene)(hv-HDPE) with high (H-PW, Tm=56–58°C) and low (L-PW, Tm=18–23°C) melting point paraffin waxes were readily prepared using twin-screw extrusion. The thermo-physical properties of these materials were assessed using a combination of techniques and their suitability for latent heat thermal energy storage (LHTES) assessed. The melt processing temperature (160°C) of the HDPE used was well below the onset of thermal decomposition of H-PW (220°C), but above that for L-PW (130°C), although the decomposition process extended over a range of 120°C and the residence time of L-PW in the extruder was <30s. The SSPCMs prepared had latent heats up to 89J/g and the enthalpy values for H-PW in the respective blends decreased with increasing H-PW loading, as a consequence of co-crystallisation of H-PW and hv-HDPE. Static and dynamic mechanical analysis confirmed both waxes have a plasticisation effect on this HDPE. Irrespective of the mode of deformation (tension, flexural, compression) modulus and stress decreased with increased wax loading in the blend, but the H-PW blends were mechanically superior to those with L-PW.

Suggested Citation

  • Mu, Mulan & Basheer, P.A.M. & Sha, Wei & Bai, Yun & McNally, Tony, 2016. "Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes," Applied Energy, Elsevier, vol. 162(C), pages 68-82.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:68-82
    DOI: 10.1016/j.apenergy.2015.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191501257X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
    2. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    3. Sittisart, Pongphat & Farid, Mohammed M., 2011. "Fire retardants for phase change materials," Applied Energy, Elsevier, vol. 88(9), pages 3140-3145.
    4. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
    5. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    6. Hadjieva, M & Stoykov, R & Filipova, Tz, 2000. "Composite salt-hydrate concrete system for building energy storage," Renewable Energy, Elsevier, vol. 19(1), pages 111-115.
    7. Zhou, Guobing & Zhang, Yinping & Lin, Kunping & Xiao, Wei, 2008. "Thermal analysis of a direct-gain room with shape-stabilized PCM plates," Renewable Energy, Elsevier, vol. 33(6), pages 1228-1236.
    8. Pasupathy, A. & Velraj, R. & Seeniraj, R.V., 2008. "Phase change material-based building architecture for thermal management in residential and commercial establishments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 39-64, January.
    9. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    10. Raj, V. Antony Aroul & Velraj, R., 2010. "Review on free cooling of buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2819-2829, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    2. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    3. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    4. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Jiang, Zhu & Navarro Rivero, Maria Elena & Liu, Xianglei & She, Xiaohui & Xuan, Yimin & Ding, Yulong, 2021. "A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method," Applied Energy, Elsevier, vol. 303(C).
    6. Huang, Qiqiu & Li, Xinxi & Zhang, Guoqing & Kan, Yongchun & Li, Canbing & Deng, Jian & Wang, Changhong, 2022. "Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management," Applied Energy, Elsevier, vol. 309(C).
    7. Wu, Tingting & Hu, Yanxin & Rong, Huiqiang & Wang, Changhong, 2021. "SEBS-based composite phase change material with thermal shape memory for thermal management applications," Energy, Elsevier, vol. 221(C).
    8. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling," Renewable Energy, Elsevier, vol. 140(C), pages 140-151.
    9. Wu, Weixiong & Wu, Wei & Wang, Shuangfeng, 2019. "Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications," Applied Energy, Elsevier, vol. 236(C), pages 10-21.
    10. Li, Zongtao & Wu, Yuxuan & Zhuang, Baoshan & Zhao, Xuezhi & Tang, Yong & Ding, Xinrui & Chen, Kaihang, 2017. "Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity," Applied Energy, Elsevier, vol. 206(C), pages 1147-1157.
    11. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    13. Natasha Dantas Lorenzo & Leonardo Seibert Kuhn & Túlio Caetano Guimarães & Mona Nazari Sam & Christoph Mankel & Antonio Caggiano & Eduardus Koenders & Cleiton Antonio Nunes & Saulo Rocha Ferreira, 2023. "Potential Use of Bio-Oleogel as Phase Change Material," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    14. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
    15. Zuo, Xiaochao & Li, Jianwen & Zhao, Xiaoguang & Yang, Huaming & Chen, Deliang, 2020. "Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 152(C), pages 579-589.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
    2. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    3. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    4. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    5. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    6. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    7. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    8. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    9. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    10. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    11. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    12. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    13. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    14. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    15. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    16. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    17. Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
    18. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    19. Panchabikesan, Karthik & Vellaisamy, Kumaresan & Ramalingam, Velraj, 2017. "Passive cooling potential in buildings under various climatic conditions in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1236-1252.
    20. Rao, Zhonghao & Wang, Shuangfeng & Zhang, Zhengguo, 2012. "Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3136-3145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:68-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.