IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v159y2015icp51-61.html
   My bibliography  Save this article

Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis

Author

Listed:
  • Liang, Zhengtang
  • Liang, Jun
  • Zhang, Li
  • Wang, Chengfu
  • Yun, Zhihao
  • Zhang, Xu

Abstract

The causes of uncertainty in wind farm power generation are not yet fully understood. A method for the scale division of wind power based on the Hilbert–Huang transform (HHT) and Hurst analysis is proposed in this paper, which allows the various multi-scale chaotic characteristics of wind power to be investigated to reveal further information about the dynamic behavior of wind power. First, the time–frequency characteristics of wind power are analyzed using the HHT, and then Hurst analysis is applied to analyze the stochastic/persistent characteristics of the different time–frequency components. Second, based on their fractal structures, the components are superposed and reconstructed into three series, which are defined as the Micro-, Meso- and Macro-scale subsequences. Finally, indices related to the statistical and behavioral characteristics of the subsequences are calculated and used to analyze their nonlinear dynamic behavior. The data collected from a wind farm of Hebei Province, China, are selected for case studies. The simulation results reveal that (1) although the time–frequency components can be decomposed, the different fractal structures of the signal are also derived from the original series; (2) the three scale subsequences all present chaotic characteristics and each of them exhibits its own unique properties. The Micro-scale subsequence shows strong randomness and contributes the least to the overall fluctuations; the Macro-scale subsequence is the steadiest and exhibits the most significant tendency; the Meso-scale subsequence which possesses the greatest variance contribution rate and the maximum largest Lyapunov exponent, is the dominant factor driving the fluctuation and dynamic behavior of wind power; (3) the short-term predictions of these three subsequences based on extreme learning machine (ELM) and least-squares support vector machine (LSSVM) models have validated the above analysis results, which show that the number of steps of look-ahead predictability have pursued an ordinal trend in term of the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) and the prediction error contribution rate of the Meso-scale subsequence is the maximum. Furthermore, the short-term wind power forecasting of 6-step-ahead based on the multi-scale analysis is performed by EMD-LSSVM+ELM and the normalized Mean Absolute Error (nMAE) and normalized Root Mean Square Error (nRMSE) have been decreased by 49.45% and 44.30% compared with those of LSSVM, and 37.96% and 27.12% compared with those of EMD-LSSVM, respectively.

Suggested Citation

  • Liang, Zhengtang & Liang, Jun & Zhang, Li & Wang, Chengfu & Yun, Zhihao & Zhang, Xu, 2015. "Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis," Applied Energy, Elsevier, vol. 159(C), pages 51-61.
  • Handle: RePEc:eee:appene:v:159:y:2015:i:c:p:51-61
    DOI: 10.1016/j.apenergy.2015.08.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Dayang & Liang, Jun & Han, Xueshan & Zhao, Jianguo, 2011. "Profiling the regional wind power fluctuation in China," Energy Policy, Elsevier, vol. 39(1), pages 299-306, January.
    2. Coughlin, Katie & Murthi, Aditya & Eto, Joseph, 2014. "Multi-scale analysis of wind power and load time series data," Renewable Energy, Elsevier, vol. 68(C), pages 494-504.
    3. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.
    4. Deane, J.P. & Drayton, G. & Ó Gallachóir, B.P., 2014. "The impact of sub-hourly modelling in power systems with significant levels of renewable generation," Applied Energy, Elsevier, vol. 113(C), pages 152-158.
    5. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    6. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    7. Rehman, S. & Siddiqi, A.H., 2009. "Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1081-1090.
    8. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    9. Tsekouras, Georgios & Koutsoyiannis, Demetris, 2014. "Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy," Renewable Energy, Elsevier, vol. 63(C), pages 624-633.
    10. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    11. Carapellucci, Roberto & Giordano, Lorena, 2013. "The effect of diurnal profile and seasonal wind regime on sizing grid-connected and off-grid wind power plants," Applied Energy, Elsevier, vol. 107(C), pages 364-376.
    12. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    13. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    14. Chen, Chien-chih & Lee, Ya-Ting & Chang, Young-Fo, 2008. "A relationship between Hurst exponents of slip and waiting time data of earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4643-4648.
    15. Akdag, S.A. & Bagiorgas, H.S. & Mihalakakou, G., 2010. "Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean," Applied Energy, Elsevier, vol. 87(8), pages 2566-2573, August.
    16. Jung, Jaesung & Tam, Kwa-Sur, 2013. "A frequency domain approach to characterize and analyze wind speed patterns," Applied Energy, Elsevier, vol. 103(C), pages 435-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).
    2. Yin, Linfei & Yu, Tao & Zhang, Xiaoshun & Yang, Bo, 2018. "Relaxed deep learning for real-time economic generation dispatch and control with unified time scale," Energy, Elsevier, vol. 149(C), pages 11-23.
    3. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    4. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    5. Xu, Weifeng & Liu, Pan & Cheng, Lei & Zhou, Yong & Xia, Qian & Gong, Yu & Liu, Yini, 2021. "Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy," Renewable Energy, Elsevier, vol. 163(C), pages 772-782.
    6. Fan, Xingxing & Lin, Min, 2017. "Multiscale multifractal detrended fluctuation analysis of earthquake magnitude series of Southern California," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 225-235.
    7. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2017. "A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction," Energy, Elsevier, vol. 138(C), pages 977-990.
    8. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren & Liu, Jizhen, 2017. "Measurement and statistical analysis of wind speed intermittency," Energy, Elsevier, vol. 118(C), pages 632-643.
    9. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    10. Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.
    11. Korotin, Vladimir & Dolgonosov, Maxim & Popov, Victor & Korotina, Olesya & Korolkova, Inna, 2019. "The Ukrainian crisis, economic sanctions, oil shock and commodity currency: Analysis based on EMD approach," Research in International Business and Finance, Elsevier, vol. 48(C), pages 156-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    2. Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.
    3. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    4. Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.
    5. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    6. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    7. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    8. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    9. Zhang, Hua & Yu, Yong-Jing & Liu, Zhi-Yuan, 2014. "Study on the Maximum Entropy Principle applied to the annual wind speed probability distribution: A case study for observations of intertidal zone anemometer towers of Rudong in East China Sea," Applied Energy, Elsevier, vol. 114(C), pages 931-938.
    10. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    11. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    12. Tsekouras, Georgios & Koutsoyiannis, Demetris, 2014. "Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy," Renewable Energy, Elsevier, vol. 63(C), pages 624-633.
    13. Telesca, Luciano & Lovallo, Michele & Kanevski, Mikhail, 2016. "Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions," Applied Energy, Elsevier, vol. 162(C), pages 1052-1061.
    14. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
    15. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    17. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    18. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    19. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    20. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:159:y:2015:i:c:p:51-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.