IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v144y2015icp64-72.html
   My bibliography  Save this article

Inclusive environmental impact assessment indices with consideration of public acceptance: Application to power generation technologies in Japan

Author

Listed:
  • Takahashi, Tomoki
  • Sato, Toru

Abstract

Public acceptance is one of the most important issues when considering the sustainability of anthropogenic systems. The development of energy systems in the future will depend on the balance of environmental impact, economic feasibility, and public acceptance. On the basis of existing inclusive environmental impact indices, such as the Inclusive Impact Index (Triple I) and emergy, in the present work we propose two novel indices, Triple Isocial and Triple Iemergy-social, that can be used to evaluate public acceptance together with economic and environmental aspects simultaneously. This is the claim of originality of this work. In this study, we applied these indices to eight power generation technologies and, to quantify public expectations and concern, we conducted a questionnaire survey about these technologies. The conjoint analysis reveals the marginal rate of allowance to compensate (MRAC), a term we propose as a replacement of the marginal willingness to pay, in units of monetary value, ecological footprint, or emergy for six attributes considered to affect public acceptance. Triple Isocial and Triple Iemergy-social of the power generation technologies are calculated using MRAC, and it suggests that only the geological thermal energy is sustainable while the others need to be improved in terms of monetary, environmental, and/or social costs to reach a level at which these technologies are regarded as sustainable.

Suggested Citation

  • Takahashi, Tomoki & Sato, Toru, 2015. "Inclusive environmental impact assessment indices with consideration of public acceptance: Application to power generation technologies in Japan," Applied Energy, Elsevier, vol. 144(C), pages 64-72.
  • Handle: RePEc:eee:appene:v:144:y:2015:i:c:p:64-72
    DOI: 10.1016/j.apenergy.2015.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915000690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashad, S. M. & Hammad, F. H., 2000. "Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity-generating systems," Applied Energy, Elsevier, vol. 65(1-4), pages 211-229, April.
    2. Takahiro Tsuge & Atsuo Kishimoto & Kenji Takeuchi, 2005. "A Choice Experiment Approach to the Valuation of Mortality," Journal of Risk and Uncertainty, Springer, vol. 31(1), pages 73-95, July.
    3. Wang, Zhaohua & Zhang, Bin & Zhang, Yixiang, 2012. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," Applied Energy, Elsevier, vol. 91(1), pages 235-244.
    4. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    5. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    6. Lei, Kampeng & Zhou, Shaoqi, 2012. "Per capita resource consumption and resource carrying capacity: A comparison of the sustainability of 17 mainstream countries," Energy Policy, Elsevier, vol. 42(C), pages 603-612.
    7. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    8. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    9. Afgan, Naim H. & Carvalho, Maria G. & Hovanov, Nikolai V., 2000. "Energy system assessment with sustainability indicators," Energy Policy, Elsevier, vol. 28(9), pages 603-612, July.
    10. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    11. Hensher, David A. & Shore, Nina & Train, Kenneth, 2014. "Willingness to pay for residential electricity supply quality and reliability," Applied Energy, Elsevier, vol. 115(C), pages 280-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    2. Islam Elsayed & Yoshiki Nishi, 2018. "A Feasibility Study on Power Generation from Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs," Energies, MDPI, vol. 11(11), pages 1-18, November.
    3. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    4. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    5. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    6. Saleh, Layla & Zaabi, Mohamed al & Mezher, Toufic, 2019. "Estimating the social carbon costs from power and desalination productions in UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Maslov, Nicolas & Claramunt, Christophe & Wang, Tianzhen & Tang, Tianhao, 2017. "Method to estimate the visual impact of an offshore wind farm," Applied Energy, Elsevier, vol. 204(C), pages 1422-1430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Zuo, Jian & Sun, Zhiyu & Zillante, George & Chen, Xianming, 2013. "Sustainability in hydropower development—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 230-237.
    2. An, Da & Xi, Beidou & Ren, Jingzheng & Wang, Yue & Jia, Xiaoping & He, Chang & Li, Zhiwei, 2017. "Sustainability assessment of groundwater remediation technologies based on multi-criteria decision making method," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 36-46.
    3. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    4. Paredes-Gazquez, Juan Diego & Rodriguez-Fernandez, José Miguel & de la Cuesta-Gonzalez, Marta, 2016. "Measuring corporate social responsibility using composite indices: Mission impossible? The case of the electricity utility industry," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 142-153.
    5. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    6. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    7. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    8. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    9. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    10. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    11. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    12. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    13. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    14. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Goldrath, T. & Ayalon, O. & Shechter, M., 2015. "A combined sustainability index for electricity efficiency measures," Energy Policy, Elsevier, vol. 86(C), pages 574-584.
    16. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    17. Paulo Antônio Xavier Furtado & Antônio Vanderley Herrero Sola, 2020. "Fuzzy Complex Proportional Assessment Applied in Location Selection for Installation of Photovoltaic Plants," Energies, MDPI, vol. 13(23), pages 1-20, November.
    18. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    19. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:144:y:2015:i:c:p:64-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.