IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v140y2015icp234-245.html
   My bibliography  Save this article

Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters

Author

Listed:
  • Bermúdez, V.
  • Serrano, J.R.
  • Piqueras, P.
  • García-Afonso, O.

Abstract

Wall-flow type diesel particulate filter (DPF) is a required aftertreatment system for particle emission abatement and standards fulfilment in Diesel engines. However, the DPF use involves an important flow restriction, especially as the substrate gets soot and ash loaded. It gives as a result the increase of the exhaust back-pressure and hence a fuel consumption penalty. The increasing damage of fuel consumption with DPF soot loading leads to the need of the regeneration process. Usually based on active strategies, this process involves an additional fuel penalty but prevents from excessive DPF pressure drop and ensures secure soot burnt out.

Suggested Citation

  • Bermúdez, V. & Serrano, J.R. & Piqueras, P. & García-Afonso, O., 2015. "Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters," Applied Energy, Elsevier, vol. 140(C), pages 234-245.
  • Handle: RePEc:eee:appene:v:140:y:2015:i:c:p:234-245
    DOI: 10.1016/j.apenergy.2014.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip, K.V. & Vasa, Nilesh J. & Carsten, Kopp & Ravindra, K.U., 2011. "Incineration of diesel particulate matter using induction heating technique," Applied Energy, Elsevier, vol. 88(3), pages 938-946, March.
    2. Torregrosa, A.J. & Serrano, J.R. & Arnau, F.J. & Piqueras, P., 2011. "A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters," Energy, Elsevier, vol. 36(1), pages 671-684.
    3. Serrano, José Ramón & Arnau, Francisco José & Piqueras, Pedro & García-Afonso, Óscar, 2013. "Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions," Energy, Elsevier, vol. 58(C), pages 644-654.
    4. Kuwahara, T. & Nishii, S. & Kuroki, T. & Okubo, M., 2013. "Complete regeneration characteristics of diesel particulate filter using ozone injection," Applied Energy, Elsevier, vol. 111(C), pages 652-656.
    5. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    6. Lee, Sang-Jin & Jeong, Soo-Jeong & Kim, Woo-Seung, 2009. "Numerical design of the diesel particulate filter for optimum thermal performances during regeneration," Applied Energy, Elsevier, vol. 86(7-8), pages 1124-1135, July.
    7. Lapuerta, Magín & Rodríguez-Fernández, José & Oliva, Fermín, 2012. "Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions," Energy, Elsevier, vol. 47(1), pages 543-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    2. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
    3. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    4. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    5. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    6. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    7. Zhang, Jun & Wong, Victor W. & Shuai, Shijin & Chen, Yu & Sappok, Alexander, 2018. "Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine," Applied Energy, Elsevier, vol. 229(C), pages 1010-1023.
    8. Torregrosa, Antonio José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2017. "Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters," Energy, Elsevier, vol. 119(C), pages 887-900.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    2. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    3. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    4. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    5. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    6. Torregrosa, Antonio José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2017. "Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters," Energy, Elsevier, vol. 119(C), pages 887-900.
    7. Bermúdez, Vicente & Serrano, José Ramón & Piqueras, Pedro & Campos, Daniel, 2015. "Analysis of the influence of pre-DPF water injection technique on pollutants emission," Energy, Elsevier, vol. 89(C), pages 778-792.
    8. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    9. Seok, Jungmin & Chun, Kwang Min & Song, Soonho & Lee, Jeongmin, 2014. "An empirical study of the dry soot filtration behavior of a metal foam filter on a particle number concentration basis," Energy, Elsevier, vol. 76(C), pages 949-957.
    10. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    11. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    12. Kuwahara, T. & Nishii, S. & Kuroki, T. & Okubo, M., 2013. "Complete regeneration characteristics of diesel particulate filter using ozone injection," Applied Energy, Elsevier, vol. 111(C), pages 652-656.
    13. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    14. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    15. Luján, José Manuel & Serrano, José Ramon & Piqueras, Pedro & Diesel, Bárbara, 2019. "Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature," Applied Energy, Elsevier, vol. 240(C), pages 409-423.
    16. Serrano, José Ramón & Climent, Héctor & Piqueras, Pedro & Angiolini, Emanuele, 2016. "Filtration modelling in wall-flow particulate filters of low soot penetration thickness," Energy, Elsevier, vol. 112(C), pages 883-898.
    17. Galindo, José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2012. "Heat transfer modelling in honeycomb wall-flow diesel particulate filters," Energy, Elsevier, vol. 43(1), pages 201-213.
    18. Rodríguez-Fernández, José & Lapuerta, Magín & Sánchez-Valdepeñas, Jesús, 2017. "Regeneration of diesel particulate filters: Effect of renewable fuels," Renewable Energy, Elsevier, vol. 104(C), pages 30-39.
    19. Yanting Du & Guangdi Hu & Shun Xiang & Ke Zhang & Hongxing Liu & Feng Guo, 2018. "Estimation of the Diesel Particulate Filter Soot Load Based on an Equivalent Circuit Model," Energies, MDPI, vol. 11(2), pages 1-13, February.
    20. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:140:y:2015:i:c:p:234-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.