IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v104y2017icp30-39.html
   My bibliography  Save this article

Regeneration of diesel particulate filters: Effect of renewable fuels

Author

Listed:
  • Rodríguez-Fernández, José
  • Lapuerta, Magín
  • Sánchez-Valdepeñas, Jesús

Abstract

Current trends in diesel transport anticipate that in the upcoming future a range of renewable fuels will be necessary to comply with emission and sustainability legislations. Exhaust after-treatment devices such as diesel particulate filters –DPFs– will have to operate satisfactorily with this pool of biofuels. In particular, DPF regeneration is crucial to cut the fuel penalty and guarantee an acceptable lifetime for this device. In the present work, an automotive diesel engine was run with fossil fuel and three renewable fuels: a conventional biodiesel, a fuel manufactured through Fischer-Tropsch –FT– process and a HVO biofuel. The DPF was loaded and regenerated through an active process with fuel post-injections. Additionally, soot samples were investigated with thermo-gravimetry (TGA) and calorimetry (DSC) to confirm whether these techniques obtain relevant information for explaining DPF behavior. Both methods proved that biodiesel leads to a more economical regeneration being the biodiesel soot, more reactive than the other samples, the main reason. DPF regenerations with paraffinic fuels (FT-derived and HVO) did not reveal strong differences compared to diesel, though TGA and DSC results suggested that soot from paraffinic biofuels is more reactive than that from diesel. The exhaust gas temperature and composition are behind this apparent discrepancy.

Suggested Citation

  • Rodríguez-Fernández, José & Lapuerta, Magín & Sánchez-Valdepeñas, Jesús, 2017. "Regeneration of diesel particulate filters: Effect of renewable fuels," Renewable Energy, Elsevier, vol. 104(C), pages 30-39.
  • Handle: RePEc:eee:renene:v:104:y:2017:i:c:p:30-39
    DOI: 10.1016/j.renene.2016.11.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torregrosa, A.J. & Serrano, J.R. & Arnau, F.J. & Piqueras, P., 2011. "A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters," Energy, Elsevier, vol. 36(1), pages 671-684.
    2. Armas, Octavio & García-Contreras, Reyes & Ramos, Ángel, 2013. "Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle," Applied Energy, Elsevier, vol. 107(C), pages 183-190.
    3. Omidvarborna, Hamid & Kumar, Ashok & Kim, Dong-Shik, 2015. "Recent studies on soot modeling for diesel combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 635-647.
    4. Lapuerta, Magín & Rodríguez-Fernández, José & Oliva, Fermín, 2012. "Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions," Energy, Elsevier, vol. 47(1), pages 543-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Devendra & Subramanian, K.A. & Garg, MO, 2018. "Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2947-2954.
    2. Lapuerta, Magín & Ramos, Ángel & Barba, Javier & Fernández-Rodríguez, David, 2018. "Cold- and warm-temperature emissions assessment of n-butanol blends in a Euro 6 vehicle," Applied Energy, Elsevier, vol. 218(C), pages 173-183.
    3. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    4. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    5. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. García, Duban & Ramos, Ángel & Rodríguez-Fernández, José & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine," Energy, Elsevier, vol. 201(C).
    7. José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
    8. Bortel, Ivan & Vávra, Jiří & Takáts, Michal, 2019. "Effect of HVO fuel mixtures on emissions and performance of a passenger car size diesel engine," Renewable Energy, Elsevier, vol. 140(C), pages 680-691.
    9. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).
    10. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    2. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    3. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    4. Bermúdez, Vicente & Serrano, José Ramón & Piqueras, Pedro & Campos, Daniel, 2015. "Analysis of the influence of pre-DPF water injection technique on pollutants emission," Energy, Elsevier, vol. 89(C), pages 778-792.
    5. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    6. Bermúdez, V. & Serrano, J.R. & Piqueras, P. & García-Afonso, O., 2015. "Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters," Applied Energy, Elsevier, vol. 140(C), pages 234-245.
    7. Lapuerta, Magín & Rodríguez-Fernández, José & García-Contreras, Reyes, 2015. "Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle," Energy, Elsevier, vol. 93(P1), pages 568-579.
    8. Seok, Jungmin & Chun, Kwang Min & Song, Soonho & Lee, Jeongmin, 2014. "An empirical study of the dry soot filtration behavior of a metal foam filter on a particle number concentration basis," Energy, Elsevier, vol. 76(C), pages 949-957.
    9. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    11. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    12. Saeid Shahpouri & Armin Norouzi & Christopher Hayduk & Reza Rezaei & Mahdi Shahbakhti & Charles Robert Koch, 2021. "Hybrid Machine Learning Approaches and a Systematic Model Selection Process for Predicting Soot Emissions in Compression Ignition Engines," Energies, MDPI, vol. 14(23), pages 1-25, November.
    13. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    14. Serrano, José Ramón & Arnau, Francisco José & Piqueras, Pedro & García-Afonso, Óscar, 2013. "Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions," Energy, Elsevier, vol. 58(C), pages 644-654.
    15. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Mingfei Mu & Xinghu Li & Yong Qiu & Yang Shi, 2019. "Study on a New Gasoline Particulate Filter Structure Based on the Nested Cylinder and Diversion Channel Plug," Energies, MDPI, vol. 12(11), pages 1-19, May.
    17. Torregrosa, Antonio José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2017. "Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters," Energy, Elsevier, vol. 119(C), pages 887-900.
    18. Chankrajang, Thanyaporn, 2019. "State-community property-rights sharing in forests and its contributions to environmental outcomes: Evidence from Thailand's community forestry," Journal of Development Economics, Elsevier, vol. 138(C), pages 261-273.
    19. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Zhiyuan Yang & Haowen Chen & Changxiong Li & Hao Guo & Qinming Tan, 2023. "Performance Test and Structure Optimization of a Marine Diesel Particulate Filter," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:104:y:2017:i:c:p:30-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.