IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp1155-1165.html
   My bibliography  Save this article

Renewable energy-driven innovative energy-efficient desalination technologies

Author

Listed:
  • Ghaffour, Noreddine
  • Lattemann, Sabine
  • Missimer, Thomas
  • Ng, Kim Choon
  • Sinha, Shahnawaz
  • Amy, Gary

Abstract

Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10kWh per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4kWh_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5kWh_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group’s contribution in developing innovative low energy-driven desalination technologies.

Suggested Citation

  • Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1155-1165
    DOI: 10.1016/j.apenergy.2014.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raluy, Gemma & Serra, Luis & Uche, Javier, 2006. "Life cycle assessment of MSF, MED and RO desalination technologies," Energy, Elsevier, vol. 31(13), pages 2361-2372.
    2. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Ma, Zuiliang, 2008. "Theoretical study on the performance of an integrated ground-source heat pump system in a whole year," Energy, Elsevier, vol. 33(11), pages 1671-1679.
    3. Sarbatly, Rosalam & Chiam, Chel-Ken, 2013. "Evaluation of geothermal energy in desalination by vacuum membrane distillation," Applied Energy, Elsevier, vol. 112(C), pages 737-746.
    4. Mahmoudi, Hacene & Spahis, Nawel & Goosen, Mattheus. F. & Sablani, Shyam & Abdul-wahab, Sabah. A. & Ghaffour, Noreddine & Drouiche, Nadjib, 2009. "Assessment of wind energy to power solar brackish water greenhouse desalination units: A case study from Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2149-2155, October.
    5. Ghaffour, N. & Reddy, V.K. & Abu-Arabi, M., 2011. "Technology development and application of solar energy in desalination: MEDRC contribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4410-4415.
    6. Thu, Kyaw & Kim, Young-Deuk & Amy, Gary & Chun, Won Gee & Ng, Kim Choon, 2013. "A hybrid multi-effect distillation and adsorption cycle," Applied Energy, Elsevier, vol. 104(C), pages 810-821.
    7. Feng, Zijun & Zhao, Yangsheng & Zhou, Anchao & Zhang, Ning, 2012. "Development program of hot dry rock geothermal resource in the Yangbajing Basin of China," Renewable Energy, Elsevier, vol. 39(1), pages 490-495.
    8. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Shiming, Deng & Ma, Zuiliang, 2007. "A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection," Energy, Elsevier, vol. 32(11), pages 2199-2209.
    9. Mahmoudi, Hacene & Abdellah, Ouagued & Ghaffour, Noreddine, 2009. "Capacity building strategies and policy for desalination using renewable energies in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 921-926, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaffour, N. & Soukane, S. & Lee, J.-G. & Kim, Y. & Alpatova, A., 2019. "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review," Applied Energy, Elsevier, vol. 254(C).
    2. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    3. Mahmoudi, Hacene & Spahis, Nawel & Goosen, Mattheus F. & Ghaffour, Noreddine & Drouiche, Nadjib & Ouagued, Abdellah, 2010. "Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: A case study from Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 512-517, January.
    4. Mattheus Goosen & Hacene Mahmoudi & Noreddine Ghaffour, 2010. "Water Desalination Using Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-20, August.
    5. Al-Ismaili, Abdulrahim M. & Jayasuriya, Hemanatha, 2016. "Seawater greenhouse in Oman: A sustainable technique for freshwater conservation and production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 653-664.
    6. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    7. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    8. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    9. Shuiping Zhu & Jianjun Sun & Kaiyang Zhong & Haisheng Chen, 2021. "Numerical Investigation of the Influence of Precooling on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 15(1), pages 1-15, December.
    10. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    11. Lazzari, Stefano & Priarone, Antonella & Zanchini, Enzo, 2010. "Long-term performance of BHE (borehole heat exchanger) fields with negligible groundwater movement," Energy, Elsevier, vol. 35(12), pages 4966-4974.
    12. Li, Huai & Nagano, Katsunori & Lai, Yuanxiang & Shibata, Kazuo & Fujii, Hikari, 2013. "Evaluating the performance of a large borehole ground source heat pump for greenhouses in northern Japan," Energy, Elsevier, vol. 63(C), pages 387-399.
    13. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    14. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    15. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    16. Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Improving the thermal performance of coaxial borehole heat exchangers," Energy, Elsevier, vol. 35(2), pages 657-666.
    17. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    18. Fernandez-Gonzalez, C. & Dominguez-Ramos, A. & Ibañez, R. & Irabien, A., 2015. "Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 604-615.
    19. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    20. Shim, B.O. & Park, C.-H., 2013. "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea," Energy, Elsevier, vol. 56(C), pages 167-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1155-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.