IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp490-503.html
   My bibliography  Save this article

An efficient mathematical model for air-breathing PEM fuel cells

Author

Listed:
  • Ismail, M.S.
  • Ingham, D.B.
  • Hughes, K.J.
  • Ma, L.
  • Pourkashanian, M.

Abstract

A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to prevent membrane dehydration.

Suggested Citation

  • Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2014. "An efficient mathematical model for air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 135(C), pages 490-503.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:490-503
    DOI: 10.1016/j.apenergy.2014.08.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Achmad, F. & Kamarudin, S.K. & Daud, W.R.W. & Majlan, E.H., 2011. "Passive direct methanol fuel cells for portable electronic devices," Applied Energy, Elsevier, vol. 88(5), pages 1681-1689, May.
    2. Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2012. "Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 95(C), pages 50-63.
    3. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2013. "Thermal modelling of the cathode in air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 111(C), pages 529-537.
    4. Yuan, Wei & Tang, Yong & Wang, Qinghui & Wan, Zhenping, 2011. "Dominance evaluation of structural factors in a passive air-breathing direct methanol fuel cell based on orthogonal array analysis," Applied Energy, Elsevier, vol. 88(5), pages 1671-1680, May.
    5. Henriques, T. & César, B. & Branco, P.J. Costa, 2010. "Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study," Applied Energy, Elsevier, vol. 87(4), pages 1400-1409, April.
    6. Seo, Sang Hern & Lee, Chang Sik, 2010. "A study on the overall efficiency of direct methanol fuel cell by methanol crossover current," Applied Energy, Elsevier, vol. 87(8), pages 2597-2604, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    2. Agarwal, Daksh & Potnuru, Rakesh & Kaushik, Chiranjeev & Darla, Vinay Rajesh & Kulkarni, Kaustubh & Garg, Ashish & Gupta, Raju Kumar & Tiwari, Naveen & Nalwa, Kanwar Singh, 2022. "Recent advances in the modeling of fundamental processes in liquid metal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
    4. Kheirandish, Azadeh & Motlagh, Farid & Shafiabady, Niusha & Dahari, Mahidzal & Khairi Abdul Wahab, Ahmad, 2017. "Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system," Applied Energy, Elsevier, vol. 202(C), pages 20-31.
    5. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    6. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2022. "Air-breathing versus conventional polymer electrolyte fuel cells: A parametric numerical study," Energy, Elsevier, vol. 250(C).
    7. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    8. Baik, Kyung Don & Yang, Seong Ho, 2020. "Development of cathode cooling fins with a multi-hole structure for open-cathode polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 279(C).
    9. Lu, Xu & Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2018. "A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications," Applied Energy, Elsevier, vol. 217(C), pages 241-248.
    10. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    11. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Air-breathing polymer electrolyte fuel cells: A review," Renewable Energy, Elsevier, vol. 213(C), pages 86-108.
    13. Calili-Cankir, Fatma & Ismail, Mohammed S. & Berber, Mohamed R. & Alrowaili, Ziyad A. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2022. "Dynamic models for air-breathing and conventional polymer electrolyte fuel cells: A comparative study," Renewable Energy, Elsevier, vol. 195(C), pages 1001-1014.
    14. Li, Qingshan & Wang, Chenfang & Wang, Chunmei & Zhou, Taotao & Zhang, Xianwen & Zhang, Yangjun & Zhuge, Weilin & Sun, Li, 2023. "Comparison of organic coolants for boiling cooling of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    15. Islam, Mohammad Rafiqul & Shabani, Bahman & Rosengarten, Gary, 2016. "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach," Applied Energy, Elsevier, vol. 178(C), pages 660-671.
    16. Sasmito, Agus P. & Kurnia, Jundika C. & Shamim, Tariq & Mujumdar, Arun S., 2017. "Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method," Applied Energy, Elsevier, vol. 185(P2), pages 1225-1232.
    17. Zhang, Jikai & Wang, Changjian & Zhang, Aifeng, 2022. "Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2013. "Thermal modelling of the cathode in air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 111(C), pages 529-537.
    2. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    3. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    4. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
    5. Yuan, Wei & Wang, Aoyu & Ye, Guangzhao & Pan, Baoyou & Tang, Kairui & Chen, Haimu, 2017. "Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 431-443.
    6. Kumar, Piyush & Dutta, Kingshuk & Das, Suparna & Kundu, Patit Paban, 2014. "Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC," Applied Energy, Elsevier, vol. 123(C), pages 66-74.
    7. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    8. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    9. Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
    10. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    11. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    12. Sasmito, Agus P. & Kurnia, Jundika C. & Shamim, Tariq & Mujumdar, Arun S., 2017. "Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method," Applied Energy, Elsevier, vol. 185(P2), pages 1225-1232.
    13. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "High power direct methanol fuel cell with a porous carbon nanofiber anode layer," Applied Energy, Elsevier, vol. 113(C), pages 946-954.
    14. Jiang, Jinghui & Li, Yinshi & Liang, Jiarong & Yang, Weiwei & Li, Xianglin, 2019. "Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Chen, Qing-Yun & Fu, Rong & Fang, Xiao-Wen & Cai, Wen-Fang & Wang, Yun-Hai & Cheng, Shao-An, 2015. "Cr-methanol fuel cell for efficient Cr(VI) removal and high power production," Applied Energy, Elsevier, vol. 138(C), pages 31-35.
    16. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    17. Zhang, Hao & Xuan, Jin & Xu, Hong & Leung, Michael K.H. & Leung, Dennis Y.C. & Zhang, Li & Wang, Huizhi & Wang, Lei, 2013. "Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study," Applied Energy, Elsevier, vol. 112(C), pages 1131-1137.
    18. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Air-breathing polymer electrolyte fuel cells: A review," Renewable Energy, Elsevier, vol. 213(C), pages 86-108.
    19. An, Myung-Gi & Mehmood, Asad & Ha, Heung Yong, 2014. "A sensor-less methanol concentration control system based on feedback from the stack temperature," Applied Energy, Elsevier, vol. 131(C), pages 257-266.
    20. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:490-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.