IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp660-671.html
   My bibliography  Save this article

Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach

Author

Listed:
  • Islam, Mohammad Rafiqul
  • Shabani, Bahman
  • Rosengarten, Gary

Abstract

PEM fuel cells are considered to be viable alternatives to Internal Combustion Engines (ICEs) in automotive applications due to their many advantages. However, one of the challenges is the need to remove considerable heat at relatively low temperatures (i.e. ∼60–80°C). Nanofluids may offer a promising solution to help reduce the size of thermal management part of PEM fuel cell systems. This paper describes a simulation model developed to theoretically study the effect of using of nanofluids as coolants on the size of the heat exchanger (HE) and the pumping power in PEM fuel cell cooling systems. Considering a 2.4kW PEM fuel cell, 50/50 water-ethylene glycol based nanofluids with concentration of 0.05–2vol% have been investigated. By using 0.05vol% concentration, ∼21% reduction of frontal area of the HE is obtained compared with that using the base fluid at constant coolant mass flow rate. By increasing nanoparticle concentration from 0.05 to 2vol%, a further reduction of only ∼4% of the frontal area of HE can be obtained. No significant difference was found in pumping power when using nanofluids compared that using the base fluid. Using standard models there is negligible differences in the thermal performance using a variety of nanofluids.

Suggested Citation

  • Islam, Mohammad Rafiqul & Shabani, Bahman & Rosengarten, Gary, 2016. "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach," Applied Energy, Elsevier, vol. 178(C), pages 660-671.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:660-671
    DOI: 10.1016/j.apenergy.2016.06.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Hafiz Muhammad & Ali, Hassan & Liaquat, Hassan & Bin Maqsood, Hafiz Talha & Nadir, Malik Ahmed, 2015. "Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids," Energy, Elsevier, vol. 84(C), pages 317-324.
    2. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2015. "Molten carbonate fuel cell: An experimental analysis of a 1kW system fed by landfill gas," Applied Energy, Elsevier, vol. 140(C), pages 146-160.
    3. Kang, Sanggyu & Min, Kyoungdoug, 2016. "Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle," Applied Energy, Elsevier, vol. 161(C), pages 181-196.
    4. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2014. "An efficient mathematical model for air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 135(C), pages 490-503.
    5. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    6. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    7. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2013. "Thermal modelling of the cathode in air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 111(C), pages 529-537.
    8. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    9. Devendiran, Dhinesh Kumar & Amirtham, Valan Arasu, 2016. "A review on preparation, characterization, properties and applications of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 21-40.
    10. Rakhshanpouri, S. & Rowshanzamir, S., 2013. "Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model," Energy, Elsevier, vol. 50(C), pages 220-231.
    11. Daungthongsuk, Weerapun & Wongwises, Somchai, 2007. "A critical review of convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 797-817, June.
    12. Hwang, Jenn-Jiang, 2013. "Thermal control and performance assessment of a proton exchanger membrane fuel cell generator," Applied Energy, Elsevier, vol. 108(C), pages 184-193.
    13. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R., 2012. "An overview of hydrogen as a vehicle fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5511-5528.
    14. Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
    15. Park, Jaeman & Oh, Hwanyeong & Lee, Yoo Il & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2016. "Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance," Applied Energy, Elsevier, vol. 171(C), pages 200-212.
    16. John Andrews & Bahman Shabani, 2014. "The role of hydrogen in a global sustainable energy strategy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 474-489, September.
    17. Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
    18. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    19. Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.
    20. Jang, Jer-Huan & Yan, Wei-Mon & Chiu, Han-Chieh & Lui, Jun-Yi, 2015. "Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode," Applied Energy, Elsevier, vol. 142(C), pages 108-114.
    21. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assaf, Jihane & Shabani, Bahman, 2019. "A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness," Renewable Energy, Elsevier, vol. 138(C), pages 509-520.
    2. Mahdavi, Arash & Ranjbar, Ali Akbar & Gorji, Mofid & Rahimi-Esbo, Mazaher, 2018. "Numerical simulation based design for an innovative PEMFC cooling flow field with metallic bipolar plates," Applied Energy, Elsevier, vol. 228(C), pages 656-666.
    3. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Jiaming Zhang & Fuwu Yan & Changqing Du & Wenhao Li & Hongzhang Fang & Jun Shen, 2023. "Model-Based Performance Optimization of Thermal Management System of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(9), pages 1-19, May.
    6. Chen, Fengxiang & Pei, Yaowang & Jiao, Jieran & Chi, Xuncheng & Hou, Zhongjun, 2023. "Energy flow and thermal voltage analysis of water-cooled PEMFC stack under normal operating conditions," Energy, Elsevier, vol. 275(C).
    7. Blal, Mohamed & Benatiallah, Ali & NeÇaibia, Ammar & Lachtar, Salah & Sahouane, Nordine & Belasri, Ahmed, 2019. "Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation," Energy, Elsevier, vol. 168(C), pages 182-199.
    8. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    9. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    10. Hugo Alejandro García-Duarte & María Carolina Ruiz-Cañas & Romel Antonio Pérez-Romero, 2022. "Innovative Experimental Design for the Evaluation of Nanofluid-Based Solvent as a Hybrid Technology for Optimizing Cyclic Steam Stimulation Applications," Energies, MDPI, vol. 16(1), pages 1-21, December.
    11. Ebrahimi-Moghadam, Amir & Mohseni-Gharyehsafa, Behnam & Farzaneh-Gord, Mahmood, 2018. "Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector," Renewable Energy, Elsevier, vol. 129(PA), pages 473-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    3. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    4. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    5. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    6. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    7. Sharma, Anuj Kumar & Tiwari, Arun Kumar & Dixit, Amit Rai, 2016. "Rheological behaviour of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 779-791.
    8. Ahmad, S.H.A. & Saidur, R. & Mahbubul, I.M. & Al-Sulaiman, F.A., 2017. "Optical properties of various nanofluids used in solar collector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1014-1030.
    9. Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.
    10. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    11. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    12. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    13. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    14. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    15. Huminic, Gabriela & Huminic, Angel, 2012. "Application of nanofluids in heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5625-5638.
    16. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    17. Dhinesh Kumar, D. & Valan Arasu, A., 2018. "A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1669-1689.
    18. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    19. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    20. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:660-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.