IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v125y2014icp218-229.html
   My bibliography  Save this article

Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter

Author

Listed:
  • de Prada Gil, Mikel
  • Gomis-Bellmunt, Oriol
  • Sumper, Andreas

Abstract

The aim of this paper is to analyse, from the technical and economic point of view, the suitability of a proposed Offshore Wind Power Plant (OWPP) scheme based on removing the individual power converters of each wind turbine and connecting a turbine cluster (or an entire WPP) to a single large power converter (SLPC), by means of a centralised control. This proposed concept is specially worthwhile for HVDC interfaced offshore or remote WPPs where a common power converter (LCC or VSC) is required at the connection point of the wind farms. According to this approach, two WPP topologies are studied depending on whether the SLPC operates at variable or constant frequency (SLPC-VF or SLPC-CF). A detailed methodology to assess any WPP layout under any wind condition is presented and applied to a case study. In order to obtain accurate results, a wake model considering single, partial and multiple wakes within a WPP is considered. The implemented algorithm takes into account the steady-state and maintenance (preventive and corrective) energy losses, as well as investment and operation and maintenance (O&M) costs, to provide a precise technical and economic assessment of each WPP topology analysed. Due to the uncertainty of certain parameters, a sensitivity analysis varying the cost and efficiency of the individual power converters of each wind turbine, as well as the main economic indicators, has been performed. The results obtained suggests a good potential for the SLPC-VF scheme achieving a total cost saving of up to 6% compared to the conventional WPP topology, based on individual power converters connected to each turbine. Likewise, the effectiveness of implementing an optimum electrical frequency calculation algorithm for variable frequency operation within the WPP is demonstrated as a greater economic benefit can be realised for SLPC-VF instead of SLPC-CF scheme.

Suggested Citation

  • de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
  • Handle: RePEc:eee:appene:v:125:y:2014:i:c:p:218-229
    DOI: 10.1016/j.apenergy.2014.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400261X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ladenburg, Jacob, 2009. "Visual impact assessment of offshore wind farms and prior experience," Applied Energy, Elsevier, vol. 86(3), pages 380-387, March.
    2. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2011. "Analysis of a multi turbine offshore wind farm connected to a single large power converter operated with variable frequency," Energy, Elsevier, vol. 36(5), pages 3272-3281.
    3. Gomis-Bellmunt, Oriol & Junyent-Ferré, Adrià & Sumper, Andreas & Galceran-Arellano, Samuel, 2010. "Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter," Applied Energy, Elsevier, vol. 87(10), pages 3103-3109, October.
    4. Serrano González, J. & Burgos Payán, M. & Riquelme Santos, J., 2013. "Optimum design of transmissions systems for offshore wind farms including decision making under risk," Renewable Energy, Elsevier, vol. 59(C), pages 115-127.
    5. Snyder, Brian & Kaiser, Mark J., 2009. "A comparison of offshore wind power development in europe and the U.S.: Patterns and drivers of development," Applied Energy, Elsevier, vol. 86(10), pages 1845-1856, October.
    6. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    7. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2012. "Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects," Energy, Elsevier, vol. 37(1), pages 455-468.
    8. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    9. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    2. Raza, Muhammad & Collados, Carlos & Gomis-Bellmunt, Oriol, 2017. "Reactive power management in an offshore AC network having multiple voltage source converters," Applied Energy, Elsevier, vol. 206(C), pages 793-803.
    3. Li, Jianwei & Yang, Qingqing & Mu, Hao & Le Blond, Simon & He, Hongwen, 2018. "A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm," Applied Energy, Elsevier, vol. 220(C), pages 13-20.
    4. Soares, Pedro M.M. & Lima, Daniela C.A. & Cardoso, Rita M. & Nascimento, Manuel L. & Semedo, Alvaro, 2017. "Western Iberian offshore wind resources: More or less in a global warming climate?," Applied Energy, Elsevier, vol. 203(C), pages 72-90.
    5. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    6. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    7. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    8. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    9. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    10. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    11. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    12. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    13. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
    14. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    15. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Yang, Ruizhen & He, Yunze & Zhang, Hong, 2016. "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1225-1250.
    17. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.
    18. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).
    19. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    20. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    21. De-Prada-Gil, Mikel & Díaz-González, Francisco & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2015. "DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment," Energy, Elsevier, vol. 86(C), pages 311-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    2. Schweizer, Joerg & Antonini, Alessandro & Govoni, Laura & Gottardi, Guido & Archetti, Renata & Supino, Enrico & Berretta, Claudia & Casadei, Carlo & Ozzi, Claudia, 2016. "Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea," Applied Energy, Elsevier, vol. 177(C), pages 449-463.
    3. Madariaga, A. & Martín, J.L. & Zamora, I. & Martínez de Alegría, I. & Ceballos, S., 2013. "Technological trends in electric topologies for offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 32-44.
    4. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    5. Meng, Yongqing & Yan, Shuhao & Wu, Kang & Ning, Lianhui & Li, Xuan & Wang, Xiuli & Wang, Xifan, 2021. "Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 1955-1968.
    6. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    7. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    8. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    9. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
    10. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    11. Eugenio Baita-Saavedra & David Cordal-Iglesias & Almudena Filgueira-Vizoso & Laura Castro-Santos, 2019. "Economic Aspects of a Concrete Floating Offshore Wind Platform in the Atlantic Arc of Europe," IJERPH, MDPI, vol. 16(21), pages 1-15, October.
    12. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    13. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    14. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    15. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2011. "Analysis of a multi turbine offshore wind farm connected to a single large power converter operated with variable frequency," Energy, Elsevier, vol. 36(5), pages 3272-3281.
    16. Bains, Henna & Madariaga, Ander & Troffaes, Matthias C.M. & Kazemtabrizi, Behzad, 2020. "An economic model for offshore transmission asset planning under severe uncertainty," Renewable Energy, Elsevier, vol. 160(C), pages 1174-1184.
    17. Harvey, L.D. Danny, 2013. "The potential of wind energy to largely displace existing Canadian fossil fuel and nuclear electricity generation," Energy, Elsevier, vol. 50(C), pages 93-102.
    18. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2012. "Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects," Energy, Elsevier, vol. 37(1), pages 455-468.
    19. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    20. De-Prada-Gil, Mikel & Díaz-González, Francisco & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2015. "DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment," Energy, Elsevier, vol. 86(C), pages 311-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:125:y:2014:i:c:p:218-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.