IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v122y2014icp112-132.html
   My bibliography  Save this article

Hydrogen storage in clathrate hydrates: Current state of the art and future directions

Author

Listed:
  • Veluswamy, Hari Prakash
  • Kumar, Rajnish
  • Linga, Praveen

Abstract

Hydrogen is looked upon as the next generation clean energy carrier, search for an efficient material and method for storing hydrogen has been pursued relentlessly. Improving hydrogen storage capacity to meet DOE targets has been challenging and research efforts are continuously put forth to achieve the set targets and to make hydrogen storage a commercially realizable process. This review comprehensively summarizes the state of the art experimental work conducted on the storage of hydrogen as hydrogen clathrates both at the molecular level and macroscopic level. It identifies future directions and challenges for this exciting area of research. Hydrogen storage capacities of different clathrate structures – sI, sII, sH, sVI and semi clathrates have been compiled and presented. In addition, promising new approaches for increasing hydrogen storage capacity have been described. Future directions for achieving increased hydrogen storage and process scale up have been outlined. Despite few limitations in storing hydrogen in the form of clathrates, this domain receives prominent attention due to more environmental-friendly method of synthesis, easy recovery of molecular hydrogen with minimum energy requirement, and improved safety of the process.

Suggested Citation

  • Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
  • Handle: RePEc:eee:appene:v:122:y:2014:i:c:p:112-132
    DOI: 10.1016/j.apenergy.2014.01.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914000920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.01.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Hyun Ju & Lee, Ju Dong & Linga, Praveen & Englezos, Peter & Kim, Young Seok & Lee, Man Sig & Kim, Yang Do, 2010. "Gas hydrate formation process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 35(6), pages 2729-2733.
    2. Tajima, Hideo & Yamasaki, Akihiro & Kiyono, Fumio, 2004. "Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation," Energy, Elsevier, vol. 29(11), pages 1713-1729.
    3. Ferdi Schüth, 2005. "Hydrogen and hydrates," Nature, Nature, vol. 434(7034), pages 712-713, April.
    4. Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Li, Gang & Huang, Ning-Sheng & Zhang, Yu, 2013. "Experimental study on gas production from methane hydrate in porous media by SAGD method," Applied Energy, Elsevier, vol. 112(C), pages 1233-1240.
    5. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
    6. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    7. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
    8. Xie, Yingming & Li, Gang & Liu, Daoping & Liu, Ni & Qi, Yingxia & Liang, Deqing & Guo, Kaihua & Fan, Shuanshi, 2010. "Experimental study on a small scale of gas hydrate cold storage apparatus," Applied Energy, Elsevier, vol. 87(11), pages 3340-3346, November.
    9. Li, Xiao-Sen & Xu, Chun-Gang & Chen, Zhao-Yang & Wu, Hui-Jie, 2010. "Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride," Energy, Elsevier, vol. 35(9), pages 3902-3908.
    10. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    11. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Feng, Jing-Chun, 2013. "A three-dimensional study on methane hydrate decomposition with different methods using five-spot well," Applied Energy, Elsevier, vol. 112(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    2. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    3. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    4. Babu, Ponnivalavan & Ho, Chie Yin & Kumar, Rajnish & Linga, Praveen, 2014. "Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture," Energy, Elsevier, vol. 70(C), pages 664-673.
    5. Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
    6. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Zhao, Yuechao & Ruan, Xuke & Zhang, Yi & Wang, Shanrong, 2014. "Hydrate-based technology for CO2 capture from fossil fuel power plants," Applied Energy, Elsevier, vol. 116(C), pages 26-40.
    7. Xu, Chun-Gang & Xie, Wen-Jun & Chen, Guo-Shu & Yan, Xiao-Xue & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis," Energy, Elsevier, vol. 198(C).
    8. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    9. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    10. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    11. Kim, Soyoung & Seo, Yongwon, 2015. "Semiclathrate-based CO2 capture from flue gas mixtures: An experimental approach with thermodynamic and Raman spectroscopic analyses," Applied Energy, Elsevier, vol. 154(C), pages 987-994.
    12. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    13. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    14. Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
    15. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Liu, Weiguo & Dou, Binlin & Jing, Wen, 2014. "Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media," Applied Energy, Elsevier, vol. 135(C), pages 504-511.
    16. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    17. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    18. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    19. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    20. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:122:y:2014:i:c:p:112-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.