IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v103y2013icp25-31.html
   My bibliography  Save this article

Feasibility of utilizing renewable energy systems for a small hotel in Ajloun city, Jordan

Author

Listed:
  • Aagreh, Yaser
  • Al-Ghzawi, Audai

Abstract

This paper presents a feasibility analysis for renewable energy (RE) supply options feeding a small hotel in Ajloun city located in the north part of Jordan. Both technical and economical aspects are investigated for each scenario of the considered supply options. Net present cost (NPC), renewable fraction (RF) and payback time (TPB) are used to asses the potential of each supply option. All required modeling, simulation and evaluation are carried out using the assessment software package HOMER (National Renewable Energy Laboratory, US). The results obtained show that on-grid small wind turbine scheme is the most feasible supply option to feed the electrical loads in the hotel. With hub height of 25m and zero sell back rate (SBR) the NPC of this configuration is $62.7×103, which is even less than that of grid-only supply option. Moreover, it is resulted in 62% RF, a TPB of 10.9years and a reduction of green house gas emission (GHE) of 8.8ton per year. When the extra generated energy is sold back to grid with SBR of $0.06 (0.5 of the purchase price), the assessment parameters NPC, TPB and GHE are reduced to $44.3×103, 0.101ton/year and 6.6year, respectively. In addition, the results show that the NPC of grid-connected wind energy scheme sharply decreases with the increase in the carbon tax. The authors believe that the implementation of stand-alone configurations, based on wind and hybrid wind/solar energy resources, will increase in the future. This is due to the expectations of the decrease in the costs of the main components constituting these configurations and the increase in the overall efficiencies of these schemes.

Suggested Citation

  • Aagreh, Yaser & Al-Ghzawi, Audai, 2013. "Feasibility of utilizing renewable energy systems for a small hotel in Ajloun city, Jordan," Applied Energy, Elsevier, vol. 103(C), pages 25-31.
  • Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:25-31
    DOI: 10.1016/j.apenergy.2012.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200712X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    2. Hrayshat, Eyad S., 2009. "Viability of solar photovoltaics as an electricity generation source for Jordan," Renewable Energy, Elsevier, vol. 34(10), pages 2133-2140.
    3. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    4. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    5. Hrayshat, Eyad S., 2005. "Wind availability and its potentials for electricity generation in Tafila, Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 111-117, February.
    6. Anagreh, Yaser & Bataineh, Ahmad & Al-Odat, Muhammad, 2010. "Assessment of renewable energy potential, at Aqaba in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1347-1351, May.
    7. Jaber, J.O. & Jaber, Q.M. & Sawalha, S.A. & Mohsen, M.S., 2008. "Evaluation of conventional and renewable energy sources for space heating in the household sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 278-289, January.
    8. Hrayshat, Eyad S. & Al-Soud, Mohammed S., 2004. "Potential of solar energy development for water pumping in Jordan," Renewable Energy, Elsevier, vol. 29(8), pages 1393-1399.
    9. Anagreh, Yaser & Bataineh, Ahmad, 2011. "Renewable energy potential assessment in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2232-2239, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    2. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    3. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    4. Fahd Diab & Hai Lan & Lijun Zhang & Salwa Ali, 2015. "An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part One: What Is the Optimum City?," Energies, MDPI, vol. 8(7), pages 1-19, July.
    5. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    6. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    7. Jaber, Jamal O. & Awad, Wael & Rahmeh, Taieseer Abu & Alawin, Aiman A. & Al-Lubani, Suleiman & Dalu, Sameh Abu & Dalabih, Ali & Al-Bashir, Adnan, 2017. "Renewable energy education in faculties of engineering in Jordan: Relationship between demographics and level of knowledge of senior students’," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 452-459.
    8. Ahmad Bataineh & Amin Alqudah & Abedalgany Athamneh, 2014. "Optimal Design of Hybrid Power Generation System to Ensure Reliable Power Supply to the Health Center at Umm Jamal, Mafraq, Jordan," Energy and Environment Research, Canadian Center of Science and Education, vol. 4(3), pages 1-9, December.
    9. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    10. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    11. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    12. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
    13. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    14. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2014. "A heuristic method to design autonomous village electrification projects with renewable energies," Energy, Elsevier, vol. 73(C), pages 96-109.
    15. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
    16. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
    17. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Jaber, Jamal O. & Awad, Wael & Rahmeh, Taieseer Abu & Alawin, Aiman A. & Al-Lubani, Suleiman & Dalu, Sameh Abu & Dalabih, Ali & Al-Bashir, Adnan, 2017. "Renewable energy education in faculties of engineering in Jordan: Relationship between demographics and level of knowledge of senior students’," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 452-459.
    5. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
    6. Navratil, J. & Picha, K. & Buchecker, M. & Martinat, S. & Svec, R. & Brezinova, M. & Knotek, J., 2019. "Visitors’ preferences of renewable energy options in “green” hotels," Renewable Energy, Elsevier, vol. 138(C), pages 1065-1077.
    7. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    8. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    9. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    10. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    11. Dhirasasna, NiNa & Sahin, Oz, 2021. "A system dynamics model for renewable energy technology adoption of the hotel sector," Renewable Energy, Elsevier, vol. 163(C), pages 1994-2007.
    12. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    13. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    14. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    15. Dalton, G.J. & Alcorn, R. & Lewis, T., 2010. "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, Elsevier, vol. 35(2), pages 443-455.
    16. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    17. Ali, Liaqat & Shahnia, Farhad, 2017. "Determination of an economically-suitable and sustainable standalone power system for an off-grid town in Western Australia," Renewable Energy, Elsevier, vol. 106(C), pages 243-254.
    18. Roman Švec & Stanislav Martinát & Kamil Pícha & Petr Klusáček & Jaroslav Knotek & Justin Calvin Schaefer & Monika Březinová & Josef Navrátil, 2021. "What drives visitors to tourist sites to choose “green” accommodation facilities?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15074-15099, October.
    19. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
    20. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:103:y:2013:i:c:p:25-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.