IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp32-43.html
   My bibliography  Save this article

Heat integration of biochemical ethanol production from straw – A case study

Author

Listed:
  • Kravanja, Philipp
  • Modarresi, Ala
  • Friedl, Anton

Abstract

Ethanol produced from lignocellulosic biomass is a desired, renewable fuel that can help to reduce our dependence on oil. In order to achieve the commercial deployment of this fuel good economic and environmental performance are mandatory. Both these targets are tackled by the efficient use of process heat. This work deals with the heat integration of the biochemical production of ethanol from straw. Process simulation and pinch analysis are applied to investigate a base case design of the production process. The energy intensive unit operations distillation and evaporation are in the focus of this pinch analysis. Pressure and heat load modifications of these sections are applied to improve the process design. For this improved process design a heat exchanger network is synthesized. Energy stream and pinch analysis revealed that process residues easily suffice to provide the investigated process with heat. The design modifications of the distillation and evaporation sections lead to increased heat integration. Consequently, a 15% reduction of the utility targets compared to the base case is obtained in the improved design. The heat exchanger network for the improved design is simple, yet the increase in utility consumption compared to the utility targets is quite modest. As a result, in the network only 51% of waste biomass suffice to provide the process with heat. The exceeding biomass can be used for the recovery of energy or material by-products, which highlights the need for efficient polygeneration concepts.

Suggested Citation

  • Kravanja, Philipp & Modarresi, Ala & Friedl, Anton, 2013. "Heat integration of biochemical ethanol production from straw – A case study," Applied Energy, Elsevier, vol. 102(C), pages 32-43.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:32-43
    DOI: 10.1016/j.apenergy.2012.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morandin, Matteo & Toffolo, Andrea & Lazzaretto, Andrea & Maréchal, François & Ensinas, Adriano V. & Nebra, Silvia A., 2011. "Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system," Energy, Elsevier, vol. 36(6), pages 3675-3690.
    2. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    3. Anselm Eisentraut, 2010. "Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries," IEA Energy Papers 2010/1, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Ruifeng & Yu, Yunsong & Zhang, Zaoxiao, 2014. "Simultaneous optimization of integrated heat, mass and pressure exchange network using exergoeconomic method," Applied Energy, Elsevier, vol. 136(C), pages 1098-1109.
    2. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    3. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    4. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    5. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    6. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    7. Cortes-Rodríguez, Edgar Fernando & Fukushima, Nilton Asao & Palacios-Bereche, Reynaldo & Ensinas, Adriano V. & Nebra, Silvia A., 2018. "Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane – Heat integration and impacts in cogeneration system," Renewable Energy, Elsevier, vol. 115(C), pages 474-488.
    8. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    9. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    10. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dias, M.O.S. & Junqueira, T.L. & Jesus, C.D.F. & Rossell, C.E.V. & Maciel Filho, R. & Bonomi, A., 2012. "Improving bioethanol production – Comparison between extractive and low temperature fermentation," Applied Energy, Elsevier, vol. 98(C), pages 548-555.
    2. Alves, Moises & Ponce, Gustavo H.S.F. & Silva, Maria Aparecida & Ensinas, Adriano V., 2015. "Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel," Energy, Elsevier, vol. 91(C), pages 751-757.
    3. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    4. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    5. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    6. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    7. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    8. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    10. Lazzaretto, Andrea & Morandin, Matteo & Toffolo, Andrea, 2012. "Methodological aspects in synthesis of combined sugar and ethanol production plant," Energy, Elsevier, vol. 41(1), pages 165-174.
    11. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    12. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    13. Koffi Ekouevi & Voravate Tuntivate, 2012. "Household Energy Access for Cooking and Heating : Lessons Learned and the Way Forward," World Bank Publications - Books, The World Bank Group, number 9372, December.
    14. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    15. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    17. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    18. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    19. Atreyi Pramanik & Aashna Sinha & Kundan Kumar Chaubey & Sujata Hariharan & Deen Dayal & Rakesh Kumar Bachheti & Archana Bachheti & Anuj K. Chandel, 2023. "Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    20. Mahesh, A. & Shoba Jasmin, K.S., 2013. "Role of renewable energy investment in India: An alternative to CO2 mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 414-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:32-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.