IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v100y2012icp3-9.html
   My bibliography  Save this article

Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora

Author

Listed:
  • Cheng, Chieh-Lun
  • Che, Pei-Yi
  • Chen, Bor-Yann
  • Lee, Wen-Jhy
  • Lin, Chiu-Yue
  • Chang, Jo-Shu

Abstract

Biobutanol production from cellulosic feedstock is considered promising and economically feasible. A highly efficient butanol-producing bacterial microflora (containing mainly Clostridial species) was obtained from hydrogen-producing sewage sludge. In this work, two types of agricultural waste (i.e. rice straw and sugarcane bagasse) were alkaline pretreated and then hydrolyzed using a cocktail of cellulases originating from Pseudomonas sp. CL3 and Clostridium sp. TCW1. The hydrolysates were used to produce biobutanol by the isolated mixture culture using either separate hydrolysis and fermentation (SHF) or a combination of SHF with simultaneous saccharification and fermentation (SHF–SSF) processes. In the SHF process, the maximum butanol concentration, productivity, yield and ABE (acetone–butanol–ethanol) ratio from bagasse were 2.29g/L, 1.00g/Ld, 0.52mol butanol/mol reducing sugar and 0.12:1:0.06, respectively, and for rice straw were 2.92g/L, 1.41g/Ld, 0.51mol butanol/mol reducing sugar and 0.19:1:0.1, respectively. In the SHF–SSF process, the maximum butanol concentration, productivity, and yield for bagasse were 1.95g/L, 0.61g/Ld and 0.37mol butanol/mol reducing sugar, respectively, and for rice straw were 2.93g/L, 0.86g/Ld and 0.49mol butanol/mol reducing sugar, respectively. This work demonstrated a novel and feasible approach of converting agricultural waste into a valuable biofuel (i.e. butanol).

Suggested Citation

  • Cheng, Chieh-Lun & Che, Pei-Yi & Chen, Bor-Yann & Lee, Wen-Jhy & Lin, Chiu-Yue & Chang, Jo-Shu, 2012. "Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora," Applied Energy, Elsevier, vol. 100(C), pages 3-9.
  • Handle: RePEc:eee:appene:v:100:y:2012:i:c:p:3-9
    DOI: 10.1016/j.apenergy.2012.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    2. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    3. Kumar, Manish & Goyal, Yogesh & Sarkar, Abhijit & Gayen, Kalyan, 2012. "Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks," Applied Energy, Elsevier, vol. 93(C), pages 193-204.
    4. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    5. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Seong-Heon & Kim, Juyeon & Han, Jeehoon & Lee, Daewon & Kim, Hyung Ju & Kim, Yong Tae & Cheng, Xun & Xu, Ye & Lee, Jechan & Kwon, Eilhann E., 2019. "Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    3. Zhang, Changwei & Si, Zhihao & Zhang, Lihe & Li, Guozhen & Wen, Jieyi & Su, Changsheng & Wu, Yilu & Zhang, Xu & Cai, Di & Qin, Peiyong, 2022. "Reusing the acetone-butanol-ethanol separated broth as the lignocellulose pretreatment liquor for fresh corn stalk biorefinery," Renewable Energy, Elsevier, vol. 191(C), pages 807-818.
    4. Huzir, Nurhamieza Md & Aziz, Md Maniruzzaman A. & Ismail, S.B. & Abdullah, Bawadi & Mahmood, Nik Azmi Nik & Umor, N.A. & Syed Muhammad, Syed Anuar Faua’ad, 2018. "Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 476-485.
    5. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    6. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    7. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    8. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    9. Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
    10. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    11. Wojciech Dziemianowicz & Katarzyna Kotarska & Anna Świerczyńska, 2022. "Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    12. Harde, Shirish M. & Jadhav, Swati B. & Bankar, Sandip B. & Ojamo, Heikki & Granström, Tom & Singhal, Rekha S. & Survase, Shrikant A., 2016. "Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii," Renewable Energy, Elsevier, vol. 86(C), pages 594-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    2. Ujor, Victor & Bharathidasan, Ashok Kumar & Cornish, Katrina & Ezeji, Thaddeus Chukwuemeka, 2014. "Feasibility of producing butanol from industrial starchy food wastes," Applied Energy, Elsevier, vol. 136(C), pages 590-598.
    3. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    4. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    5. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    6. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.
    7. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    8. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    9. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    10. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    11. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    12. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    13. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    14. Rinaldini, Carlo Alberto & Mattarelli, Enrico & Golovitchev, Valeri I., 2013. "Potential of the Miller cycle on a HSDI diesel automotive engine," Applied Energy, Elsevier, vol. 112(C), pages 102-119.
    15. Tian, Zhen-Yu & Chafik, Tarik & Assebban, Mhamed & Harti, Sanae & Bahlawane, Naoufal & Mountapmbeme Kouotou, Patrick & Kohse-Höinghaus, Katharina, 2013. "Towards biofuel combustion with an easily extruded clay as a natural catalyst," Applied Energy, Elsevier, vol. 107(C), pages 149-156.
    16. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    17. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    18. Duan, Xiongbo & Xu, Zhengxin & Sun, Xingyu & Deng, Banglin & Liu, Jingping, 2021. "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels," Energy, Elsevier, vol. 231(C).
    19. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:100:y:2012:i:c:p:3-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.