IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v378y2020ics009630032030196x.html
   My bibliography  Save this article

Evolutionary game dynamics of Moran process with fuzzy payoffs and its application

Author

Listed:
  • Gu, Cuiling
  • Wang, Xianjia
  • Zhao, Jinhua
  • Ding, Rui
  • He, Qilong

Abstract

Most of the previous studies on the evolutionary dynamics of the Moran process assumed that the payoff obtained by the participant from the games is deterministic and expressed in precise numbers. However, because of the influence of various uncertain factors of the environment, the individual's payoff is not an accurate number but needs to be expressed by a fuzzy number. In this paper, 2 × 2 symmetric games in which the game payoff matrix is represented by fuzzy numbers were studied. Firstly, we introduce the fuzzy dilemma strength to classify fuzzy games. Then, the evolution dynamics of a fuzzy Moran process of a finite population are analyzed by using the operation of a fuzzy number. Under the condition of weak selection, the fuzzy fixation probability of the strategy is calculated when the game payoff matrix is represented by the normal fuzzy numbers. Furthermore, the conditions under which natural selection favors one strategy to be fixed in population and a strategy to become a fuzzy evolutionary stability strategy are analyzed. Lastly, the proposed fuzzy Moran model was applied to solve the problem of strategy selection in the interaction between pollution-producing enterprises. By numerical analysis, the effect of fuzzy dilemma strength on the fuzzy fixation probability was illustrated and then the feasibility and effectiveness of the method were verified. The extension of classical game dynamics to a fuzzy environment enriches the theory of evolutionary games and is more realistic.

Suggested Citation

  • Gu, Cuiling & Wang, Xianjia & Zhao, Jinhua & Ding, Rui & He, Qilong, 2020. "Evolutionary game dynamics of Moran process with fuzzy payoffs and its application," Applied Mathematics and Computation, Elsevier, vol. 378(C).
  • Handle: RePEc:eee:apmaco:v:378:y:2020:i:c:s009630032030196x
    DOI: 10.1016/j.amc.2020.125227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monroy, L. & Hinojosa, M.A. & Mármol, A.M. & Fernández, F.R., 2013. "Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game," European Journal of Operational Research, Elsevier, vol. 225(1), pages 85-90.
    2. Alam, Muntasir & Nagashima, Keisuke & Tanimoto, Jun, 2018. "Various error settings bring different noise-driven effects on network reciprocity in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 338-346.
    3. Wang, Qiuling & Jia, Danyang, 2019. "Expectation driven by update willingness promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 174-179.
    4. Wang, Xianjia & Lv, Shaojie, 2019. "The roles of particle swarm intelligence in the prisoner’s dilemma based on continuous and mixed strategy systems on scale-free networks," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 213-220.
    5. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    6. Vijay, V. & Chandra, S. & Bector, C.R., 2005. "Matrix games with fuzzy goals and fuzzy payoffs," Omega, Elsevier, vol. 33(5), pages 425-429, October.
    7. Li Ming Chen & Wen Ping Wang, 2016. "The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-5, March.
    8. Yunpeng Yang & Weixin Yang, 2019. "Does Whistleblowing Work for Air Pollution Control in China? A Study Based on Three-party Evolutionary Game Model under Incomplete Information," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    9. Cabrales, Antonio, 2000. "Stochastic Replicator Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(2), pages 451-481, May.
    10. Liu, Xuesong & He, Mingfeng & Kang, Yibin & Pan, Qiuhui, 2017. "Fixation of strategies with the Moran and Fermi processes in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 336-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qinchunxue & Shu, Lan & Jiang, Bichuan, 2023. "Moran process in evolutionary game dynamics with interval payoffs and its application," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    2. Yanping Xu & Lilong Zhu, 2022. "Pharmaceutical Enterprises’ R&D Innovation Cooperation Moran Strategy When Considering Tax Incentives," IJERPH, MDPI, vol. 19(22), pages 1-13, November.
    3. Zhao, Chuan & Ma, Xuying & Wang, Kun, 2022. "The electric vehicle promotion in the cold-chain logistics under two-sided support policy: An evolutionary game perspective," Transport Policy, Elsevier, vol. 121(C), pages 14-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Qun & Cao, Zhaoheng & Tao, Rui & Jiang, Wei & Liu, Chen & Liu, Jinzhuo, 2020. "Conditional neutral punishment promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    2. Hong, Lijun & Geng, Yini & Du, Chunpeng & Shen, Chen & Shi, Lei, 2021. "Average payoff-driven or imitation? A new evidence from evolutionary game theory in finite populations," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Dai, Darong, 2012. "On the Existence of Pareto Optimal Endogenous Matching," MPRA Paper 43125, University Library of Munich, Germany.
    4. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    5. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    7. Paul F. Slade, 2019. "Dominant Cubic Coefficients of the ‘1/3-Rule’ Reduce Contest Domains," Mathematics, MDPI, vol. 7(6), pages 1-11, May.
    8. Quan, Ji & Liu, Wei & Chu, Yuqing & Wang, Xianjia, 2018. "Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 123-134.
    9. Dai, Darong & Shen, Kunrong, 2012. "A New Stationary Game Equilibrium Induced by Stochastic Group Evolution and Rational Individual Choice," MPRA Paper 40586, University Library of Munich, Germany, revised 09 Aug 2012.
    10. Song, Shenpeng & Feng, Yuhao & Xu, Wenzhe & Li, Hui-Jia & Wang, Zhen, 2022. "Evolutionary prisoner’s dilemma game on signed networks based on structural balance theory," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Runtian Zhang & Jinye Li, 2020. "Impact of incentive and selection strength on green technology innovation in Moran process," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    12. Zeng, Weijun & Ai, Hongfeng & Zhao, Man, 2019. "Asymmetrical expectations of future interaction and cooperation in the iterated prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 148-164.
    13. Dai, Darong, 2012. "On the Existence and Stability of Pareto Optimal Endogenous Matching with Fairness," MPRA Paper 40560, University Library of Munich, Germany.
    14. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    15. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    16. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    17. Martina Testori & Hedwig Eisenbarth & Rebecca B Hoyle, 2022. "Selfish risk-seeking can provide an evolutionary advantage in a conditional public goods game," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-18, January.
    18. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    19. Hui Yu & Wei Wang & Baohua Yang & Cunfang Li, 2019. "Evolutionary Game Analysis of the Stress Effect of Cross-Regional Transfer of Resource-Exhausted Enterprises," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    20. Iraklis Kollias & John Leventides & Vassilios G. Papavassiliou, 2022. "On the solution of games with arbitrary payoffs: An application to an over-the-counter financial market," Working Papers 202302, Geary Institute, University College Dublin.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:378:y:2020:i:c:s009630032030196x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.