IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i10p1443-1451.html
   My bibliography  Save this article

Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India

Author

Listed:
  • Singh, Ajay
  • Krause, Peter
  • Panda, Sudhindra N.
  • Flugel, Wolfgang-Albert

Abstract

The sustainability of the rice-wheat cropping system in an irrigated semi-arid area of Haryana State (India) is under threat due to the continuous rise in the poor quality groundwater table, which is caused by the geo-hydrological condition and poor irrigation water management. About 500,000Â ha in the State are waterlogged and unproductive and the size of the waterlogged area is increasing. We analyse the hydrology and estimate seasonal net groundwater recharge in the study area. Rainfall is quite variable, particularly in the monsoon season, and the mean monthly reference evapotranspiration shows a high inter-annual variation, with values between 2.45 and 8.47Â mm/day in December and May. Groundwater recharge analysis during the study period (1989-2008) reveals that percolation from irrigated fields is the main recharge component with 57% contribution to the total recharge. An annual groundwater table rise of 0.137Â m has been estimated for the study area. As the water table has been rising continuously, suitable water management strategies such as increasing groundwater abstraction by installing more tubewells, using the groundwater conjunctively with good quality canal water, changes in cropping patterns, adoption of salt tolerant crops, changes in water-pricing policy, and matching water supply more closely with demand, are suggested to bring the water table down to a safe limit and to prevent further rising of the water table.

Suggested Citation

  • Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:10:p:1443-1451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00135-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boumans, J. H. & van Hoorn, J. W. & Kruseman, G. P. & Tanwar, B. S., 1988. "Water table control, reuse and disposal of drainage water in Haryana," Agricultural Water Management, Elsevier, vol. 14(1-4), pages 537-545, August.
    2. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    3. Li, Wenlong & Li, Weide & Li, Zizhen, 2004. "Irrigation and fertilizer effects on water use and yield of spring wheat in semi-arid regions," Agricultural Water Management, Elsevier, vol. 67(1), pages 35-46, June.
    4. Li, Zi-Zhen & Li, Wei-De & Li, Wen-Long, 2004. "Dry-period irrigation and fertilizer application affect water use and yield of spring wheat in semi-arid regions," Agricultural Water Management, Elsevier, vol. 65(2), pages 133-143, March.
    5. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    6. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    7. Jhorar, R.K. & Smit, A.A.M.F.R. & Roest, C.W.J., 2009. "Assessment of alternative water management options for irrigated agriculture," Agricultural Water Management, Elsevier, vol. 96(6), pages 975-981, June.
    8. Kitamura, Yoshinobu & Yano, Tomohisa & Honna, Toshimasa & Yamamoto, Sadahiro & Inosako, Koji, 2006. "Causes of farmland salinization and remedial measures in the Aral Sea basin--Research on water management to prevent secondary salinization in rice-based cropping system in arid land," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 1-14, September.
    9. Abrol, I. P., 1999. "Sustaining rice-wheat system productivity in the Indo-Gangetic plains: water management-related issues," Agricultural Water Management, Elsevier, vol. 40(1), pages 31-35, March.
    10. Kamra, S. K. & Lal, Khajanchi & Singh, O. P. & Boonstra, J., 2002. "Effect of pumping on temporal changes in groundwater quality," Agricultural Water Management, Elsevier, vol. 56(2), pages 169-178, July.
    11. Tyagi, N. K. & Tyagi, K. C. & Pillai, N. N. & Willardson, L. S., 1993. "Decision support for irrigation system improvement in saline environment," Agricultural Water Management, Elsevier, vol. 23(4), pages 285-301, July.
    12. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    13. Ritzema, H.P. & Satyanarayana, T.V. & Raman, S. & Boonstra, J., 2008. "Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers' fields," Agricultural Water Management, Elsevier, vol. 95(3), pages 179-189, March.
    14. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    15. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    16. John R. Krebs & Jeremy D. Wilson & Richard B. Bradbury & Gavin M. Siriwardena, 1999. "The second Silent Spring?," Nature, Nature, vol. 400(6745), pages 611-612, August.
    17. R. Rejani & Madan Jha & S. Panda & R. Mull, 2008. "Simulation Modeling for Efficient Groundwater Management in Balasore Coastal Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 23-50, January.
    18. Jalota, S. K. & Arora, V. K., 2002. "Model-based assessment of water balance components under different cropping systems in north-west India," Agricultural Water Management, Elsevier, vol. 57(1), pages 75-87, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajay Singh, 2016. "Optimal Allocation of Resources for Increasing Farm Revenue under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2569-2580, May.
    2. Singh, Ajay & Panda, Sudhindra Nath, 2012. "Development and application of an optimization model for the maximization of net agricultural return," Agricultural Water Management, Elsevier, vol. 115(C), pages 267-275.
    3. Zheng, X. & Zhu, J.J. & Yan, Q.L. & Song, L.N., 2012. "Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China," Agricultural Water Management, Elsevier, vol. 109(C), pages 94-106.
    4. Alejandra Vilela & Luciana González-Paleo & Kathryn Turner & Kelsey Peterson & Damián Ravetta & Timothy E. Crews & David Van Tassel, 2018. "Progress and Bottlenecks in the Early Domestication of the Perennial Oilseed Silphium integrifolium , a Sunflower Substitute," Sustainability, MDPI, vol. 10(3), pages 1-23, February.
    5. Singh, Ajay, 2012. "Validation of SaltMod for a semi-arid part of northwest India and some options for control of waterlogging," Agricultural Water Management, Elsevier, vol. 115(C), pages 194-202.
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    7. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    8. Mohammed Al-Murad & Saif Uddin & Tariq Rashid & Habib Al-Qallaf & Abdullah Bushehri, 2017. "Waterlogging in Arid Agriculture Areas Due to Improper Groundwater Management—An Example from Kuwait," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    9. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    10. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    2. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    3. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    4. Neha & Gajender Yadav & Rajender Kumar Yadav & Ashwani Kumar & Aravind Kumar Rai & Junya Onishi & Keisuke Omori & Parbodh Chander Sharma, 2022. "Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard ( Brassica juncea L.)," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    5. Li, Wenlong & Han, Xiaozhuo & Zhang, Yanyu & Li, Zizhen, 2007. "Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas," Agricultural Water Management, Elsevier, vol. 87(1), pages 106-114, January.
    6. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    7. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    8. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    9. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    10. Baba, S.H. & Wani, S.A., 2018. "Ecosystem Management Approach for Agricultural Growth in Mountains: Farmers Perception of Ecosystem Services and Dis-Services in Kashmir-India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277556, International Association of Agricultural Economists.
    11. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    12. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    13. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    14. Schönhart, Martin & Schauppenlehner, Thomas & Schmid, Erwin & Muhar, Andreas, 2011. "Integration of bio-physical and economic models to analyze management intensity and landscape structure effects at farm and landscape level," Agricultural Systems, Elsevier, vol. 104(2), pages 122-134, February.
    15. Walder, Peter & Kantelhardt, Jochen, 2018. "The Environmental Behaviour of Farmers – Capturing the Diversity of Perspectives with a Q Methodological Approach," Ecological Economics, Elsevier, vol. 143(C), pages 55-63.
    16. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
    17. Lauriane MOUYSSET & Luc DOYEN & Fréderic JIGUET, 2012. "How does the economic risk aversion affect biodiversity?," Cahiers du GREThA (2007-2019) 2012-03, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    18. Liu, Xiaogang & Li, Fusheng & Zhang, Yan & Yang, Qiliang, 2016. "Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China," Agricultural Water Management, Elsevier, vol. 172(C), pages 1-8.
    19. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    20. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:10:p:1443-1451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.