IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics0378377422006771.html
   My bibliography  Save this article

Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime

Author

Listed:
  • Wang, Yanzhi
  • Chen, Ji
  • Sun, Yidi
  • Jiao, Yanting
  • Yang, Yi
  • Yuan, Xiaoqi
  • Lærke, Poul Erik
  • Wu, Qi
  • Chi, Daocai

Abstract

Emerging studies provide promising evidence that applying zeolite combined with water-saving irrigation could effectively retain soil nutrients and increase rice yields. However, the effects of this water-nitrogen management strategy on soil nitrogen (N) loss through leaching and runoff are unclear under field conditions. Herein, we explored the dynamics of N concentrations, quantified soil N losses through leachate and runoff, and investigated the response of reducing N loss on rice yield. A three-year field experiment (2018−2020) was conducted in Donggang city of Liaoning Province in northeast China. The field experiment used a split-plot design, including two irrigation regimes [continuously flooded irrigation (CF) and alternate wetting and drying irrigation (AWD)] as main plots, and two zeolite applications (Z0, no zeolite; Z10, 10 t ha−1 zeolite) as sub-plots, so as to quantify their effects on TN, NH4+-N, NO3−-N loss, and rice yield. Averaged across 3 years, our results showed that AWD reduced the volume of irrigation, leachate, and runoff by 22.2%, 20.8%, and 18.9%, respectively, compared with CF. AWD also decreased the losses of total N (TN), NH4+-N, and NO3−-N by 25.5%, 17.5%, and 11.1% in leachate and by 22.9%, 18.3%, and 26.3% in runoff, respectively, compared with CF. Compared to Z0, Z10 reduced the losses of TN, NH4+-N, and NO3−-N by 16.0%, 16.9%, and 19.4% in leachate and by 10.0%, 14.0%, and 5.9% in runoff, respectively. N output through leaching and runoff under AWD and Z10 was decreased by 2.1% and 2.2%, respectively, compared with CF and Z0. No significant difference was found in rice yield between CF and AWD, whereas rice yields increased 3.3% under Z10 compared with Z0. Altogether, our results highlight that the combination of zeolite and AWD can simultaneously produce more rice yield and reduce soil N losses.

Suggested Citation

  • Wang, Yanzhi & Chen, Ji & Sun, Yidi & Jiao, Yanting & Yang, Yi & Yuan, Xiaoqi & Lærke, Poul Erik & Wu, Qi & Chi, Daocai, 2023. "Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006771
    DOI: 10.1016/j.agwat.2022.108130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Xinrui & Hu, Kelin & Batchelor, William D. & Liang, Hao & Wu, Yali & Wang, Qihui & Fu, Jin & Cui, Xiaoqing & Zhou, Feng, 2020. "Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Xu, Baoli & Shao, Dongguo & Fang, Longzhang & Yang, Xia & Chen, Shu & Gu, Wenquan, 2019. "Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table," Agricultural Water Management, Elsevier, vol. 214(C), pages 87-96.
    3. Yanmei Yu & Junzeng Xu & Pingcang Zhang & Yan Meng & Yujiang Xiong, 2021. "Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields," IJERPH, MDPI, vol. 18(7), pages 1-15, March.
    4. Jiao, Jiaguo & Shi, Kun & Li, Peng & Sun, Zhen & Chang, Dali & Shen, Xueshan & Wu, Di & Song, Xiuchao & Liu, Manqiang & Li, Huixin & Hu, Feng & Xu, Li, 2018. "Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China)," Agricultural Water Management, Elsevier, vol. 201(C), pages 91-98.
    5. Sepaskhah, A.R. & Barzegar, M., 2010. "Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 98(1), pages 38-44, December.
    6. Zhang, Shijie & Zhang, Gang & Wang, Dejian & Liu, Qin & Xu, Min, 2021. "Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice-wheat cropping systems," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    8. He, Wentian & Jiang, Rong & He, Ping & Yang, Jingyi & Zhou, Wei & Ma, Jinchuan & Liu, Yingxia, 2018. "Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014," Agricultural Systems, Elsevier, vol. 167(C), pages 125-135.
    9. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    10. Li, Jinwen & Qian, Xiaoyong & Zhang, Min & Fu, Kan & Zhu, Wenjun & Zhao, Qingjie & Shen, Genxiang & Wang, Zhenqi & Chen, Xiaohua, 2021. "Methodology for studying nitrogen loss from paddy fields under alternate wetting and drying irrigation in the lower reaches of the Yangtze River in China," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Fu, Jin & Wu, Yali & Wang, Qihui & Hu, Kelin & Wang, Shiqin & Zhou, Minghua & Hayashi, Kentaro & Wang, Hongyuan & Zhan, Xiaoying & Jian, Yiwei & Cai, Chen & Song, Meifang & Liu, Kaiwen & Wang, Yonghua, 2019. "Importance of subsurface fluxes of water, nitrogen and phosphorus from rice paddy fields relative to surface runoff," Agricultural Water Management, Elsevier, vol. 213(C), pages 627-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Qi & Gong, Fuzheng & Jia, Xiaofeng & Tan, Meitao & Zhang, Wenzhong & Chi, Daocai, 2023. "Maintaining rice grain yield under two irrigation regimes while reducing water-nitrogen input using acidified nitrogen-loaded biochar," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao Lyu & Xinyi Wang & Shengnan Hou & Anwar Zeb & Hui Zhu & Yingying Xu, 2023. "Content Variation and Potential Runoff Loss Risk of Nutrients in Surface Water of Saline-Alkali Paddy in Response to the Application of Different Nitrogen Fertilizer Types," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    2. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    3. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    4. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    5. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Guo, Erjing & Yang, Xiaoguang & Li, Tao & Zhang, Tianyi & Wilson, Lloyed Ted & Wang, Xiaoyu & Zheng, Dongxiao & Yang, Yubin, 2021. "Does ENSO strongly affect rice yield and water application in Northeast China?," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Sun, Yidi & He, Zhenli & Wu, Qi & Zheng, Junlin & Li, Yinghao & Wang, Yanzhi & Chen, Taotao & Chi, Daocai, 2020. "Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field," Agricultural Water Management, Elsevier, vol. 235(C).
    8. Karimzadeh Soureshjani, Hedayatollah & Nezami, Ahmad & Kafi, Mohammad & Tadayon, Mahmoudreza, 2019. "Responses of two common bean (Phaseolus vulgaris L.) genotypes to deficit irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 270-279.
    9. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    11. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    12. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    13. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    14. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    15. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    16. Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
    17. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    18. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    19. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    20. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.