IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002961.html
   My bibliography  Save this article

A model for estimating Ag-MAR flooding duration based on crop tolerance, root depth, and soil texture data

Author

Listed:
  • Ganot, Yonatan
  • Dahlke, Helen E.

Abstract

Agricultural Managed Aquifer Recharge (Ag-MAR) is an emerging MAR technique that uses agricultural fields as percolation basins to recharge the underlying aquifers. Ag-MAR can be a beneficial solution for storing excess surface water, however, if not managed properly it can potentially harm the soil and crops planted on the field at the time of recharge, ultimately leading to yield loss. Root zone residence time (RZRT), defined as the duration that the root-zone can remain saturated (or nearly saturated) during Ag-MAR without crop damage, is a key factor in Ag-MAR since extended periods of saturation in the root-zone can damage crops. Here we propose a simple RZRT model for estimating a safe Ag-MAR flooding duration based on hydraulic parameters deduced from soil texture, crop tolerance to saturation, effective root depth, and critical soil water content, which is the point where soil re-aeration occurs during drainage. We tested the model with different hydraulic parameter sets and compared the results to observed data and HYDRUS simulations. Using fitted and unfitted hydraulic parameters the average error of the predicted Ag-MAR flooding duration was less than 5 h, and up to a few days, respectively. Consequently, for crops with low flooding-tolerance, the model should be used with caution, but for more tolerant crops, the model provides reasonable predictions. The model also provides a first approximation of the possible amount of water that can be applied during an Ag-MAR event. Based on the RZRT model, we evaluated the Ag-MAR potential of various crops and effective root depths for each of the USDA soil texture classes. A spreadsheet containing the RZRT model including hydraulic parameters, and crop properties is publicly available and can be used as a learning tool or to estimate Ag-MAR flooding duration for different soils. The proposed model can be easily integrated into Ag-MAR assessment tools.

Suggested Citation

  • Ganot, Yonatan & Dahlke, Helen E., 2021. "A model for estimating Ag-MAR flooding duration based on crop tolerance, root depth, and soil texture data," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002961
    DOI: 10.1016/j.agwat.2021.107031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michelakis, N. & Vougioucalou, E. & Clapaki, G., 1993. "Water use, wetted soil volume, root distribution and yield of avocado under drip irrigation," Agricultural Water Management, Elsevier, vol. 24(2), pages 119-131, October.
    2. Sokalska, D.I. & Haman, D.Z. & Szewczuk, A. & Sobota, J. & Deren, D., 2009. "Spatial root distribution of mature apple trees under drip irrigation system," Agricultural Water Management, Elsevier, vol. 96(6), pages 917-924, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bali, Khaled M. & Mohamed, Abdelmoneim Zakaria & Begna, Sultan & Wang, Dong & Putnam, Daniel & Dahlke, Helen E. & Eltarabily, Mohamed Galal, 2023. "The use of HYDRUS-2D to simulate intermittent Agricultural Managed Aquifer Recharge (Ag-MAR) in Alfalfa in the San Joaquin Valley," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    2. Andreu, L. & Hopmans, J. W. & Schwankl, L. J., 1997. "Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 123-146, December.
    3. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    4. Belén Cárceles Rodríguez & Víctor Hugo Durán Zuazo & Dionisio Franco Tarifa & Simón Cuadros Tavira & Pedro Cermeño Sacristan & Iván Francisco García-Tejero, 2023. "Irrigation Alternatives for Avocado ( Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    5. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    6. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Song, Xiaolin & Gao, Xiaodong & Zhao, Xining & Wu, Pute & Dyck, Miles, 2017. "Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 184(C), pages 170-177.
    8. Li, Pingfeng & Cao, Xiaoqing & Tan, Huang & Wang, Jiahang & Ren, Shumei & Yang, Peiling, 2020. "Studies on water uptake and heat status of cherry root under water-saving measures," Agricultural Water Management, Elsevier, vol. 242(C).
    9. Beeson Jr., R.C., 2011. "Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates," Agricultural Water Management, Elsevier, vol. 98(6), pages 967-976, April.
    10. Hardie, Marcus & Green, Steve & Oliver, Garth & Swarts, Nigel & Clothier, Brent & Gentile, Roberta & Close, Dugald, 2022. "Measuring and modelling nitrate fluxes in a mature commercial apple orchard," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Ding, Wenbin & Wang, Fei & Dong, Yunyun & Jin, Kai & Cong, Chenyu & Han, Jianqiao & Ge, Wenyan, 2021. "Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Zhang, You-Liang & Wang, Feng-Xin & Shock, Clinton Cleon & Yang, Kai-Jing & Kang, Shao-Zhong & Qin, Jing-Tao & Li, Si-En, 2017. "Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 160-171.
    14. Mohammadi Mohammadabadi, Akbar & Hosseinifard, Seyed Javad & Sedaghati, Nasser & Nikooei Dastjerdi, Mohammadreza, 2020. "Pistachio (Pistachia vera L.) seedling growth response to irrigation method and volume in Iran," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Zhou, Lifeng & Feng, Hao & Zhao, Ying & Qi, Zhijuan & Zhang, Tibin & He, Jianqiang & Dyck, Miles, 2017. "Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil," Agricultural Water Management, Elsevier, vol. 184(C), pages 114-123.
    16. Salgado, E. & Cauti­n, R., 2008. "Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation," Agricultural Water Management, Elsevier, vol. 95(7), pages 817-824, July.
    17. Xi, Benye & Bloomberg, Mark & Watt, Michael S. & Wang, Ye & Jia, Liming, 2016. "Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain," Agricultural Water Management, Elsevier, vol. 176(C), pages 243-254.
    18. Dorta-Santos, María & Tejedor, Marisa & Jiménez, Concepción & Hernández-Moreno, Jose M. & Díaz, Francisco J., 2016. "“Using marginal quality water for an energy crop in arid regions: Effect of salinity and boron distribution patterns”," Agricultural Water Management, Elsevier, vol. 171(C), pages 142-152.
    19. Oron, Gideon & DeMalach, Yoel & Gillerman, Leonid & David, Itsik & Rao, V. P., 1999. "Improved saline-water use under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 39(1), pages 19-33, February.
    20. Silber, A. & Israeli, Y. & Levi, M. & Keinan, A. & Shapira, O. & Chudi, G. & Golan, A. & Noy, M. & Levkovitch, I. & Assouline, S., 2012. "Response of ‘Hass’ avocado trees to irrigation management and root constraint," Agricultural Water Management, Elsevier, vol. 104(C), pages 95-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.