IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420300652.html
   My bibliography  Save this article

Spatial economic predictions of managed aquifer recharge for an agricultural landscape

Author

Listed:
  • Tran, Dat Q.
  • Kovacs, Kent F.
  • West, Grant H.

Abstract

Groundwater banking through managed aquifer recharge (MAR) can augment the irrigation water supply with less social and environmental opposition than dams. Our high spatial resolution hydro-economic model investigates the influence of site conditions such as natural recharge, proximity to surface water sources, and the agronomic conditions of crops on four model outcomes: optimal MAR, final groundwater level, present value of farm net returns, and the cost-effectiveness of a MAR subsidy. We find that less irrigation intensive crops are a substitute for MAR while rice and dryland crops are a complement for MAR. Optimal MAR is larger at a site with greater net returns to rice and dryland soybeans, lower net returns to irrigated corn and soybeans, and lower natural recharge. MAR increases groundwater conservation most at the sites with higher net returns to dryland and irrigated soybeans and lower net returns to corn and cotton. MAR raises the present value of economic returns from agriculture more where the net returns from rice are large, but the cost-effective locations for a MAR subsidy are sites with large net returns to crops like cotton and soybeans. Higher natural recharge at a site correlates with a lower present value of economic returns from MAR and a less cost-effective MAR subsidy.

Suggested Citation

  • Tran, Dat Q. & Kovacs, Kent F. & West, Grant H., 2020. "Spatial economic predictions of managed aquifer recharge for an agricultural landscape," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420300652
    DOI: 10.1016/j.agwat.2020.106337
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420300652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher J. Brown & James Ward & June Mirecki, 2016. "A Revised Brackish Water Aquifer Storage and Recovery (ASR) Site Selection Index for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2465-2481, May.
    2. Wang, Chenggang & Segarra, Eduardo, 2011. "The Economics of Commonly Owned Groundwater When User Demand Is Perfectly Inelastic," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(1), pages 1-26, April.
    3. Jacob Scherberg & Troy Baker & John Selker & Rick Henry, 2014. "Design of Managed Aquifer Recharge for Agricultural and Ecological Water Supply Assessed Through Numerical Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4971-4984, November.
    4. Michael R. Moore & Noel R. Gollehon & Marc B. Carey, 1994. "Multicrop Production Decisions in Western Irrigated Agriculture: The Role of Water Price," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 859-874.
    5. Yaeger, Mary A. & Massey, Joseph H. & Reba, Michele L. & Adviento-Borbe, M. Arlene A., 2018. "Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: Implications for conjunctive water resource management," Agricultural Water Management, Elsevier, vol. 208(C), pages 373-383.
    6. Khanna, Madhu & Zilberman, David, 2017. "Theme Overview: Inducing Water Conservation in Agriculture: Institutional and Behavioral Drivers," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 32(4), November.
    7. Madhu Khanna & Scott M Swinton & Kent D Messer, 2018. "Sustaining our Natural Resources in the Face of Increasing Societal Demands on Agriculture: Directions for Future Research," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(1), pages 38-59.
    8. Balali, Hamid & Khalilian, Sadegh & Viaggi, Davide & Bartolini, Fabio & Ahmadian, Majid, 2011. "Groundwater balance and conservation under different water pricing and agricultural policy scenarios: A case study of the Hamadan-Bahar plain," Ecological Economics, Elsevier, vol. 70(5), pages 863-872, March.
    9. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    2. Kovacs, Kent & Tran, Dat Q., 2023. "Irrigation choice through water supply augmentation in the presence of climate risk and uncertainty," 2023 Annual Meeting, July 23-25, Washington D.C. 335432, Agricultural and Applied Economics Association.
    3. Kovacs, Kent & Durand-Morat, Alvaro, 2020. "Lateral flows in an aquifer and groundwater valuation," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304219, Agricultural and Applied Economics Association.
    4. repec:ags:jrapmc:122312 is not listed on IDEAS
    5. de Bonviller, Simon & Wheeler, Sarah Ann & Zuo, Alec, 2020. "The dynamics of groundwater markets: Price leadership and groundwater demand elasticity in the Murrumbidgee, Australia," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Hendricks, Nathan P. & Peterson, Jeffrey M., 2012. "Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-19, April.
    7. Kovacs, Kent & Durand-Morat, Alvaro, 2018. "Optimal Groundwater Management in Response to the Intensity of Lateral Flows," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 267164, Southern Agricultural Economics Association.
    8. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    9. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    10. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    11. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    13. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    14. Markova-Nenova, Nonka & Engler, Jan O. & Cord, Anna F. & Wätzold, Frank, 2023. "A Cost Comparison Analysis of Bird-Monitoring Techniques for Result-Based Payments in Agriculture," MPRA Paper 116311, University Library of Munich, Germany.
    15. Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
    16. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    18. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    19. Ajay Kumar Vashisht & Shri Krishna Shakya, 2020. "An Innovative Approach to Assessing the Distribution of Stored Freshwater while Injecting it through a Well Partially Screening the Brackish Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4687-4701, December.
    20. Guifang Li & Dongdong Ma & Cuiping Zhao & Hang Li, 2023. "The Effect of the Comprehensive Reform of Agricultural Water Prices on Farmers’ Planting Structure in the Oasis–Desert Transition Zone—A Case Study of the Heihe River Basin," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    21. Gerling, Charlotte & Drechsler, Martin & Keuler, Klaus & Sturm, Astrid & Wätzold, Frank, 2022. "Time to consider the timing of conservation measures: designing cost-effective agri-environment schemes under climate change," MPRA Paper 113877, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420300652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.