IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v239y2020ics0378377419316257.html
   My bibliography  Save this article

Winter wheat production on the Guanzhong Plain of Northwest China under projected future climate with SimCLIM

Author

Listed:
  • Zheng, Zhen
  • Hoogenboom, Gerrit
  • Cai, Huanjie
  • Wang, Zikai

Abstract

The Guanzhong Plain in China is particularly sensitive to climate change owing to its fragile ecological environment and geographic features. As a result, climate change is affecting the production of winter wheat in this area. In this study, we used SimCLIM (climate model) with the CSM-CERES-Wheat model to determine the impact of the climate change on the projected agricultural production of winter wheat in the Guanzhong Plain for 2020, 2040, 2060, 2080 and 2100 projections. Scenarios for three global climate models (GCMs) (BCC-CSM-1, CSIRO-MK3−6-0 and GFDL-CM3) and one greenhouse gas concentration pathway (RCP 4.5) were chosen. The results showed a warming trend in the Guanzhong Plain for both maximum and minimum temperature for the different GCMs. Although rainfall varied, the projected rainfall showed an increasing trend for February, June and December, and a decreasing trend for April, September and October. The solar radiation for the Baoji and Weinan area showed an upward trend, while the solar radiation in Wugong was greatly reduced. The maturity date of winter wheat for the three locations was reduced by 2.3–14.9 days compared with the reference year for different climate change scenarios. Water requirements of the winter wheat for the three locations under different GCMs were all increased compared with the reference year. Overall, winter wheat yield in Wugong and Weinan increased for the different GCMs scenarios during the 21st century.

Suggested Citation

  • Zheng, Zhen & Hoogenboom, Gerrit & Cai, Huanjie & Wang, Zikai, 2020. "Winter wheat production on the Guanzhong Plain of Northwest China under projected future climate with SimCLIM," Agricultural Water Management, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377419316257
    DOI: 10.1016/j.agwat.2020.106233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419316257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    2. Amin, Asad & Nasim, Wajid & Mubeen, Muhammad & Ahmad, Ashfaq & Nadeem, Muhammad & Urich, Peter & Fahad, Shah & Ahmad, Shakeel & Wajid, Aftab & Tabassum, Fareeha & Hammad, Hafiz Mohkum & Sultana, Syeda, 2018. "Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan," Agricultural Systems, Elsevier, vol. 167(C), pages 213-222.
    3. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    4. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    5. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqiang Xie & Xiaodong Yan, 2023. "Responses of Wheat Protein Content and Protein Yield to Future Climate Change in China during 2041–2060," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    2. Pingping Luo & Yue Zheng & Yiyi Wang & Shipeng Zhang & Wangqi Yu & Xi Zhu & Aidi Huo & Zhenhong Wang & Bin He & Daniel Nover, 2022. "Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    3. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    5. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    6. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    7. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    8. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    9. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    10. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    11. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    12. Liu, Xuehua & Cheng, Xiangnan & Skidmore, Andrew K., 2011. "Potential solar radiation pattern in relation to the monthly distribution of giant pandas in Foping Nature Reserve, China," Ecological Modelling, Elsevier, vol. 222(3), pages 645-652.
    13. Andi Syah Putra & Guangji Tong & Didit Okta Pribadi, 2020. "Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    14. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    15. Chakravarty, Shourish & Villoria, Nelson B., 2020. "Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture," Conference papers 333156, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Sponagel, Christian & Bendel, Daniela & Angenendt, Elisabeth & Weber, Tobias Karl David & Gayler, Sebastian & Streck, Thilo & Bahrs, Enno, 2022. "Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas – A future based case study from Germany using arable land as an example," Land Use Policy, Elsevier, vol. 117(C).
    17. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    18. repec:zib:zbppsc:v:1:y:2021:i:1:p:4-7 is not listed on IDEAS
    19. Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
    20. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    21. Siham Zaaboubi & Lotfi Khiari & Salah Abdesselam & Jacques Gallichand & Fassil Kebede & Ghouati Kerrache, 2020. "Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria," Agriculture, MDPI, vol. 10(7), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377419316257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.