IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v234y2020ics0378377419319298.html
   My bibliography  Save this article

Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?

Author

Listed:
  • Chen, Dianyu
  • Hsu, Kuolin
  • Duan, Xingwu
  • Wang, Youke
  • Wei, Xinguang
  • Muhammad, Saifullah

Abstract

The Jarvis canopy resistance sub-model is commonly used in transpiration modelling, although its optimal structure is rarely studied. It is still not fully clear that to what extent transpiration modeling may differ if using different constraint function forms for key environmental variable in Jarvis sub-model. In this study, various Jarvis canopy resistance sub-model configurations were embedded in the Penman-Monteith model to compare their ability to model daily transpiration of rain-fed jujube (Ziziphus jujuba Mill.) plantations where soil moisture is a key factor of tree water use. Parameters were calibrated using the Bayesian Markov Chain Monte Carlo (MCMC) simulation technique and model comparison was quantified using Deviance Information Criterion (DIC). The results showed significant differences in model performance between the constraint function forms of soil water content. The difference in DIC between the model with the best constraint function form and the other two forms reached 37.66–50.94, much higher than the evaluation criteria for significance (larger than 7). When the best constraint function form was used, the performance of the transpiration model improved. The model performance worsened when the other constraint function forms were used, even worse than those without consideration for soil water content. However, only slight differences in model performance were detected for the constraint function forms of temperature, vapor pressure deficit and photosynthetically active radiation. Using the best configuration of Jarvis canopy resistance sub-model, daily transpiration of jujube plantation was well estimated with overall good accuracy and acceptable uncertainty. The predictions and observations were highly correlated (R2 = 0.87 for calibration and R2 = 0.80 for validation). The results suggested that different constraint function forms of an environmental factor contributed differently to transpiration model performance, and the situation was different for different environmental factors. Including the key environmental factor in the Jarvis canopy resistance sub-model will not always improve the performance of transpiration models.

Suggested Citation

  • Chen, Dianyu & Hsu, Kuolin & Duan, Xingwu & Wang, Youke & Wei, Xinguang & Muhammad, Saifullah, 2020. "Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?," Agricultural Water Management, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s0378377419319298
    DOI: 10.1016/j.agwat.2020.106112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419319298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben D. MacArthur & Richard O. C. Oreffo, 2005. "Bridging the gap," Nature, Nature, vol. 433(7021), pages 19-19, January.
    2. Kato, Tomomichi & Kimura, Reiji & Kamichika, Makio, 2004. "Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model," Agricultural Water Management, Elsevier, vol. 65(3), pages 173-191, March.
    3. Svensson, Magnus & Jansson, Per-Erik & Gustafsson, David & Kleja, Dan Berggren & Langvall, Ola & Lindroth, Anders, 2008. "Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest stand," Ecological Modelling, Elsevier, vol. 213(3), pages 331-344.
    4. Shixiong Cao & Guosheng Wang & Li Chen, 2010. "Questionable value of planting thirsty trees in dry regions," Nature, Nature, vol. 465(7294), pages 31-31, May.
    5. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.
    6. Liu, Chunwei & Du, Taisheng & Li, Fusheng & Kang, Shaozhong & Li, Sien & Tong, Ling, 2012. "Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 104(C), pages 193-202.
    7. Chen, Dianyu & Wang, Xing & Liu, Shouyang & Wang, Youke & Gao, Zhiyong & Zhang, Linlin & Wei, Xinguang & Wei, Xindong, 2015. "Using Bayesian analysis to compare the performance of three evapotranspiration models for rainfed jujube (Ziziphus jujuba Mill.) plantations in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 159(C), pages 341-357.
    8. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    3. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dianyu & Wang, Xing & Liu, Shouyang & Wang, Youke & Gao, Zhiyong & Zhang, Linlin & Wei, Xinguang & Wei, Xindong, 2015. "Using Bayesian analysis to compare the performance of three evapotranspiration models for rainfed jujube (Ziziphus jujuba Mill.) plantations in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 159(C), pages 341-357.
    2. Hou, Panpan & Chen, Dianyu & Wei, Xuehui & Hu, Xiaotao & Duan, Xingwu & Zhang, Jingying & Qiu, Lucheng & Zhang, Linlin, 2023. "Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.
    4. Bagnara, Maurizio & Van Oijen, Marcel & Cameron, David & Gianelle, Damiano & Magnani, Federico & Sottocornola, Matteo, 2018. "Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest," Ecological Modelling, Elsevier, vol. 371(C), pages 90-100.
    5. Chen, Dianyu & Wang, Youke & Zhang, Xue & Wei, Xinguang & Duan, Xingwu & Muhammad, Saifullah, 2021. "Understory mowing controls soil drying in a rainfed jujube agroforestry system in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Xenakis, Georgios & Ray, Duncan & Mencuccini, Maurizio, 2008. "Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model," Ecological Modelling, Elsevier, vol. 219(1), pages 1-16.
    7. Wu, Si Hong & Jansson, Per-Erik & Kolari, Pasi, 2011. "Modeling seasonal course of carbon fluxes and evapotranspiration in response to low temperature and moisture in a boreal Scots pine ecosystem," Ecological Modelling, Elsevier, vol. 222(17), pages 3103-3119.
    8. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    9. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    10. Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
    11. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    12. Gao, Zhiyong & Shi, Wenjuan & Wang, Xing & Wang, Youke & Yang, Yi & Zhang, Linlin & Chen, Dianyu, 2022. "Response of dew and hydraulic redistribution to soil water in a rainfed dryland jujube plantation in China’s Hilly Loess Region," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Juston, John & Andrén, Olof & Kätterer, Thomas & Jansson, Per-Erik, 2010. "Uncertainty analyses for calibrating a soil carbon balance model to agricultural field trial data in Sweden and Kenya," Ecological Modelling, Elsevier, vol. 221(16), pages 1880-1888.
    14. Ma, Lihui & Wang, Xing & Gao, Zhiyong & Youke, Wang & Nie, Zhenyi & Liu, Xiaoli, 2019. "Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 216(C), pages 436-443.
    15. Vanessa Taylor & Sarah Ashelford & Patricia Fell & Penelope J Goacher, 2015. "Biosciences in nurse education: is the curriculum fit for practice? Lecturers' views and recommendations from across the UK," Journal of Clinical Nursing, John Wiley & Sons, vol. 24(19-20), pages 2797-2806, October.
    16. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    17. Ercan Tomakin, 2014. "Teaching English Tenses (grammar) in the Turkish Texts; A Case of Simple Present Tense: Is?l Maketi Iter," International Journal of Learning and Development, Macrothink Institute, vol. 4(1), pages 115-131, March.
    18. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    19. Radha Jagannathan & Michael J. Camasso & Bagavan Das & Jale Tosun & Sadagopan Iyengar, 2017. "Family, society and the individual: determinants of entrepreneurial attitudes among youth in Chennai, South India," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 7(1), pages 1-22, December.
    20. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s0378377419319298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.