IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic44.html
   My bibliography  Save this article

Estimating irrigation demand with geospatial and in-situ data: Application to the high plains aquifer, Kansas, USA

Author

Listed:
  • MardanDoost, B.
  • Brookfield, A.E.
  • Feddema, J.
  • Sturm, B.
  • Kastens, J.
  • Peterson, D.
  • Bishop, C.

Abstract

Unsustainable groundwater mining threatens the economic stability of several regions around the world. Developing sustainable water-use policies and integrated water-management plans requires reliably predicting water demand under variable weather and land-use conditions. Here, a water-budget model capable of estimating spatial and temporal variations in daily irrigation demand under variable weather and land-use scenarios is modified to consider irrigation management and groundwater pumping limitations. This model uses a combination of geospatial and in-situ measured data, including land-use and land-cover maps, crop-specific evapotranspiration data, and weather data. A coupled sub-model limits pumping rates based on pump capacity and spatial and temporal variations in the saturated thickness of the aquifer. The ability of this water-budget model to accurately estimate irrigation demand is demonstrated using the High Plains aquifer region of Kansas, USA, an aquifer that has undergone, and continues to undergo, significant depletion due to decades of irrigation. The model was calibrated with reported and measured water use for more than 1200 fields, with ratios of simulated annual irrigation demand to actual reported water use of 1.10, 0.78, 0.75, 0.93, and 1.40 for corn, sorghum, soybean, winter wheat, and alfalfa, respectively. Further simulations at a variety of scales, from field to multi-county levels, demonstrate that the developed water-budget model is capable of simulating the spatial and temporal variability of irrigation demand.

Suggested Citation

  • MardanDoost, B. & Brookfield, A.E. & Feddema, J. & Sturm, B. & Kastens, J. & Peterson, D. & Bishop, C., 2019. "Estimating irrigation demand with geospatial and in-situ data: Application to the high plains aquifer, Kansas, USA," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:44
    DOI: 10.1016/j.agwat.2019.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418316792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chokri Dridi & Madhu Khanna, 2005. "Irrigation Technology Adoption and Gains from Water Trading under Asymmetric Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(2), pages 289-301.
    2. Feddema, Johannes J. & Mast, Joy Nystrom & Savage, Melissa, 2013. "Modeling high-severity fire, drought and climate change impacts on ponderosa pine regeneration," Ecological Modelling, Elsevier, vol. 253(C), pages 56-69.
    3. Yin, Yunhe & Wu, Shaohong & Zheng, Du & Yang, Qinye, 2008. "Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 95(1), pages 77-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sauer, Johannes & Zilberman, David, 2009. "Innovation Behaviour At Farm Level – Selection And Identification," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51073, Agricultural Economics Society.
    2. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    3. Mattoussi, Wided & Mattoussi, Foued & Larnaout, Afrah, 2023. "Optimal subsidization for the adoption of new irrigation technologies," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1126-1141.
    4. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    5. Margarita Genius & Phoebe Koundouri & Celine Nauges & Vangelis TZOUVELEKAS, 2013. "Information Spillovers in Irrigation Technology Diffusion: Social Learning, Extension Visits and Spatial Effects," DEOS Working Papers 1319, Athens University of Economics and Business.
    6. Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
    7. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    8. Sauer, Johannes & Zilberman, David D., 2009. "Innovation behaviour at micro level - selection and identification," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6t49r0fh, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Debaere, Peter & Li, Tianshu, 2017. "The Effects of Water Markets: Evidence from the Rio Grande," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259187, Agricultural and Applied Economics Association.
    10. Hou, L.G. & Xiao, H.L. & Si, J.H. & Xiao, S.C. & Zhou, M.X. & Yang, Y.G., 2010. "Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China," Agricultural Water Management, Elsevier, vol. 97(2), pages 351-356, February.
    11. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    12. Gabriel A. Sampaio Morais & Felipe F. Silva & Carlos Otávio de Freitas & Marcelo José Braga, 2021. "Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    13. Konstantinos Chatzimichael & Dimitris Christopoulos & Spiro Stefanou & Vangelis Tzouvelekas, 2020. "Irrigation practices, water effectiveness and productivity measurement [Toward an understanding of technology adoption: risk, learning, and neighborhood effects]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 467-498.
    14. Saudamini Das, "undated". "Evaluating the Role of Media in Averting Heat Stroke Mortality: A Daily Panel Data Analysis," Working papers 102, The South Asian Network for Development and Environmental Economics.
    15. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    16. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    17. Mohammad Kousari & Mohammad Asadi Zarch & Hossein Ahani & Hemila Hakimelahi, 2013. "A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005," Climatic Change, Springer, vol. 120(1), pages 277-298, September.
    18. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    19. Swallow, Kimberly A. & Swallow, Brent M., 2015. "Explicitly integrating institutions into bioeconomic modeling:," IFPRI discussion papers 1420, International Food Policy Research Institute (IFPRI).
    20. Traore, Seydou & Wang, Yu-Min & Kerh, Tienfuan, 2010. "Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone," Agricultural Water Management, Elsevier, vol. 97(5), pages 707-714, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.