IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp499-511.html
   My bibliography  Save this article

Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques

Author

Listed:
  • Zhang, Lei
  • Traore, Seydou
  • Cui, Yuanlai
  • Luo, Yufeng
  • Zhu, Ge
  • Liu, Bo
  • Fipps, Guy
  • Karthikeyan, R.
  • Singh, Vijay

Abstract

Reference evapotranspiration (ETo) is a key component of the hydrological cycle, and it plays a vital role in agricultural, forest, and environmental management. This study assesses the capability of hot spot geospatial analysis to determine statistically significant spatial clusters of high and low ETo in China over the period of 1970–2014, based on the daily data from 598 weather stations. The global controlling factors affecting ETo across continental China are investigated using global ordinary least square regression (OLS) model. The spatial relationship between ETo and climatic variables is explored using local geographic weighted regression (GWR) model. It was found that for China as a whole, ETo decreased significantly from 1970 to 1993 at a rate of 14.91 mm decade−1, while the trend began increasing by 16.50 mm decade−1 from 1993 to 2014. The hot spot analysis showed that the regional distribution of statistically significant spatial ETo clusters remained relatively steady between years from 1970 to 2014. Hot regions were identified with high values of annual total ETo in North China (NC), South China (SC) and the Turpan Depression of Northwest China (NWC). The cold regions were highly clustered in most parts of Northeast China (NEC) and the borders between NWC, Central China (CC) and Southwest China (SWC). It was also found that statistically significant clusters of hot and cold spots exhibited a migration trend between months. The results of the OLS analysis suggested that over China, the maximum temperature, relative humidity, and wind speed were the controlling meteorological variables affecting ETo. Based on the results of GWR, maximum and minimum temperature were the most influencing climatic variables affecting ET0 over China. GWR was found to be a more powerful method than OLS for modelling ETo in China. Results of this study can be used to help end-users, planners and policy makers to anticipate their decision making, which in turn will improve regional water management in China.

Suggested Citation

  • Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:499-511
    DOI: 10.1016/j.agwat.2018.09.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418314744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2012. "Identification of Trend in Reference Evapotranspiration Series with Serial Dependence in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2219-2232, June.
    2. Ze-Xin Fan & Axel Thomas, 2013. "Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004," Climatic Change, Springer, vol. 116(2), pages 309-325, January.
    3. Ashoke Basistha & D. Arya & N. Goel, 2008. "Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1325-1346, October.
    4. Massimo Craglia & Robert Haining & Paul Wiles, 2000. "A Comparative Evaluation of Approaches to Urban Crime Pattern Analysis," Urban Studies, Urban Studies Journal Limited, vol. 37(4), pages 711-729, April.
    5. Luo, Yufeng & Chang, Xiaomin & Peng, Shizhang & Khan, Shahbaz & Wang, Weiguang & Zheng, Qiang & Cai, Xueliang, 2014. "Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts," Agricultural Water Management, Elsevier, vol. 136(C), pages 42-51.
    6. W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
    7. Goyal, R. K., 2004. "Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India)," Agricultural Water Management, Elsevier, vol. 69(1), pages 1-11, September.
    8. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    9. Mojtaba Shadmani & Safar Marofi & Majid Roknian, 2012. "Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman’s Rho Tests in Arid Regions of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 211-224, January.
    10. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    11. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Kun & Yang, Yanzhao & Dong, Guanglong & Zhang, Chao & Lang, Tingting, 2021. "Variation and determining factor of winter wheat water requirements under climate change," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Wei Liu & Linshan Yang & Meng Zhu & Jan F. Adamowski & Rahim Barzegar & Xiaohu Wen & Zhenliang Yin, 2021. "Effect of Elevation on Variation in Reference Evapotranspiration under Climate Change in Northwest China," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    3. Mokari, Esmaiil & Samani, Zohrab & Heerema, Richard & Ward, Frank, 2021. "Evaluation of long-term climate change impact on the growing season and water use of mature pecan in Lower Rio Grande Valley," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Wu, Dong & Fang, Shibo & Li, Xuan & He, Di & Zhu, Yongchao & Yang, Zaiqiang & Xu, Jiaxin & Wu, Yingjie, 2019. "Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain," Agricultural Water Management, Elsevier, vol. 214(C), pages 78-86.
    5. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    6. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    2. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Jiang, Shouzheng & Liang, Chuan & Cui, Ningbo & Zhao, Lu & Du, Taisheng & Hu, Xiaotao & Feng, Yu & Guan, Jing & Feng, Yi, 2019. "Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 365-378.
    4. Mohammad Kousari & Mohammad Asadi Zarch & Hossein Ahani & Hemila Hakimelahi, 2013. "A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005," Climatic Change, Springer, vol. 120(1), pages 277-298, September.
    5. İsmail Dabanlı & Zekai Şen & Mehmet Öner Yeleğen & Eyüp Şişman & Bülent Selek & Yavuz Selim Güçlü, 2016. "Trend Assessment by the Innovative-Şen Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5193-5203, November.
    6. Jian Tang & Xin-An Yin & Pan Yang & ZhiFeng Yang, 2014. "Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2953-2966, August.
    7. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    8. Yang, Zhenlin, 2010. "A robust LM test for spatial error components," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 299-310, September.
    9. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    10. Gianna Kitsara & Georgia Papaioannou & Athanasios Papathanasiou & Adrianos Retalis, 2013. "Dimming/brightening in Athens: Trends in Sunshine Duration, Cloud Cover and Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1623-1633, April.
    11. Machado, Jose A. F. & Silva, J. M. C. Santos, 2000. "Glejser's test revisited," Journal of Econometrics, Elsevier, vol. 97(1), pages 189-202, July.
    12. Kermit Daniel & Dan Black & Jeffery Smith, 1996. "College Characteristics and the Wages of Young Women," HEW 9604002, University Library of Munich, Germany.
    13. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    14. Michael O'Connor Keefe & David Gallagher, 2014. "Does the effect of revealed private information on initial public offering (IPO) first trading day return differ by IPO market heat?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 54(3), pages 921-964, September.
    15. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    17. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    18. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    19. Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
    20. Azimi, Mohammad Naim, 2016. "An economic growth model: Evaluating the interaction of market consumption with GDP growth rate in Afghanistan," MPRA Paper 69517, University Library of Munich, Germany, revised 11 Jan 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:499-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.