IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v208y2018icp204-213.html
   My bibliography  Save this article

The virtual Water flow of crops between intraregional and interregional in mainland China

Author

Listed:
  • Fu, YiCheng
  • Zhao, Jinyong
  • Wang, Chengli
  • Peng, Wenqi
  • Wang, Qi
  • Zhang, Chunling

Abstract

Agriculture is the main consumer of freshwater in the world. The paper described the process of virtual water content and flow in crops. Differences in climatic conditions of different regions in China result in large differences in water consumption during crop growth. The virtual water trade in crops connects water flows within and between regions, linking the actual water consumption with the invisible water trade as a whole. The objective of the paper was supplying the agricultural products virtual water trade evaluation system, determining quantitatively the virtual water flow within the region & regional. Using meteorological and agricultural data from 2003 to 2010, a comprehensive analysis of China's domestic & international virtual water trade of agricultural products has been undertaken. The virtual water for the three primary crops and virtual water trade are discussed. The virtual water content of grain crops in northern & southern China was 1293 m3/t & 942 m3/t, respectively; the national average value was 1117 m3/t; and the regional differences in virtual water content for each crop were significant. China's inter-regional agricultural products virtual water trade was not consistent with water resource endowment expectations. The transfer of crops from northern to southern regions would have a significant impact on the sustainable utilization of water resources and would exacerbate water resources shortages in northern regions. China had a trade surplus in global virtual water trade of agricultural products. The exported agricultural products virtual water amounted to 31.5 billion m3/yr., and the imported amount was 145 billion m3/yr. The net import of virtual water embedded in agricultural products increased from 44 billion m3/yr. in 2003 to 178 billion m3/yr. in 2010. It is further concluded that the trend for agricultural products total virtual water, green water, and blue water is that China is increasing its imports year on year. A large increase in imports of agricultural products has led to a decline in the rate of self-sufficiency in domestic agricultural production. The paper provided the basis for the comprehensive evaluation of crop planting structure adjustment, grain import & export, and the potential of regional water resources development and utilization.

Suggested Citation

  • Fu, YiCheng & Zhao, Jinyong & Wang, Chengli & Peng, Wenqi & Wang, Qi & Zhang, Chunling, 2018. "The virtual Water flow of crops between intraregional and interregional in mainland China," Agricultural Water Management, Elsevier, vol. 208(C), pages 204-213.
  • Handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:204-213
    DOI: 10.1016/j.agwat.2018.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830845X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    2. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    3. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    4. Ercin, A. Ertug & Mekonnen, Mesfin M. & Hoekstra, Arjen Y., 2013. "Sustainability of national consumption from a water resources perspective: The case study for France," Ecological Economics, Elsevier, vol. 88(C), pages 133-147.
    5. Kai Fang & Reinout Heijungs & Zheng Duan & Geert R. De Snoo, 2015. "The Environmental Sustainability of Nations: Benchmarking the Carbon, Water and Land Footprints against Allocated Planetary Boundaries," Sustainability, MDPI, vol. 7(8), pages 1-21, August.
    6. Yu, Yang & Hubacek, Klaus & Feng, Kuishuang & Guan, Dabo, 2010. "Assessing regional and global water footprints for the UK," Ecological Economics, Elsevier, vol. 69(5), pages 1140-1147, March.
    7. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The effect of globalisation on water consumption: A case study of the Spanish virtual water trade, 1849–1935," Ecological Economics, Elsevier, vol. 100(C), pages 96-105.
    8. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    9. Nicole Jackson & Megan Konar & Arjen Y. Hoekstra, 2015. "The Water Footprint of Food Aid," Sustainability, MDPI, vol. 7(6), pages 1-22, May.
    10. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    11. Richard R. Rushforth & Benjamin L. Ruddell, 2015. "The Hydro-Economic Interdependency of Cities: Virtual Water Connections of the Phoenix, Arizona Metropolitan Area," Sustainability, MDPI, vol. 7(7), pages 1-26, June.
    12. M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
    13. S. Brown & H. Schreier & L. Lavkulich, 2009. "Incorporating Virtual Water into Water Management: A British Columbia Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2681-2696, October.
    14. Ángel De Miguel & Malaak Kallache & Eloy García-Calvo, 2015. "The Water Footprint of Agriculture in Duero River Basin," Sustainability, MDPI, vol. 7(6), pages 1-22, May.
    15. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Yijie & Bai, Yueyang & Shen, Xiaoxu & Zhang, Tianzuo & Jia, Yuke & Ren, Ke & Zhou, Xinying & Cheng, Ziyue & Hong, Jinglan, 2023. "Provincial water availability footprint evaluation and transfer analysis of China’s grain products: A life cycle perspective," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Samaa Mohy & Khadija El Aasar & Yasmin Sakr, 2023. "Decomposition Analysis of Virtual Water Outflows for Major Egyptian Exporting Crops to the European Union," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    4. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Arjen Y. Hoekstra & Ashok K. Chapagain & Guoping Zhang, 2015. "Water Footprints and Sustainable Water Allocation," Sustainability, MDPI, vol. 8(1), pages 1-6, December.
    3. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    4. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    5. Mohamad Afkhami & Thomas Bassetti & Hamed Ghoddusi & Filippo Pavesi, 2018. "Virtual Water Trade: The Implications of Capital Scarcity," Working Papers 03/2018, University of Verona, Department of Economics.
    6. Dong Yan & Zhiwei Jia & Jie Xue & Huaiwei Sun & Dongwei Gui & Yi Liu & Xiaofan Zeng, 2018. "Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    7. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    8. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    9. Fracasso, Andrea & Sartori, Martina & Schiavo, Stefano, 2014. "Determinants of virtual water flows in the Mediterranean," MPRA Paper 60500, University Library of Munich, Germany.
    10. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    11. Yuanhong Tian & Matthias Ruth & Dajian Zhu, 2017. "Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2355-2375, December.
    12. Song, Jianfeng & Yin, Yali & Xu, Hang & Wang, Yubao & Wu, Pute & Sun, Shikun, 2020. "Drivers of domestic grain virtual water flow: A study for China," Agricultural Water Management, Elsevier, vol. 239(C).
    13. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    14. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    15. Angela Cheptea & Catherine Laroche-Dupraz, 2019. "Is irrigation driven by the economic value of internationally traded agricultural products?," Post-Print hal-02278996, HAL.
    16. Julian Fulton & Heather Cooley & Peter Gleick, 2014. "Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3637-3649, September.
    17. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    18. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    19. Chen, Rui & Wilson, Norbert L.W., 2017. "Virtual Water Trade: Do Bilateral Tariffs Matter?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258279, Agricultural and Applied Economics Association.
    20. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:204-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.