IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v197y2018icp100-109.html
   My bibliography  Save this article

Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation

Author

Listed:
  • Wang, Jianqing
  • Liu, Xiaoyu
  • Cheng, Kun
  • Zhang, Xuhui
  • Li, Lianqing
  • Pan, Genxing

Abstract

Impact of climate change on water supply and use is a critical issue for dryland crop production. In this study is assessed the potential impact of atmospheric CO2 enrichment (500μmolmol−1, CE) and canopy warming (+2°C, WA) and their combination (CW) on crop water utilization efficiency (WUE) of winter wheat in an open-air field experiment from Southeast China. Micro-meteorological measurement and wheat growth under individual treatments over three executive years of 2012–2015 were used to estimate the crop water requirement (CWR) of wheat using an improved FAO Penman-Monteith equation. Overall, CO2 enrichment slightly decreased the CWR by 8.3%, and increased the WUE of grain production (WUEg) by 23.1%, averaged over the three years. In contrast, warming increased CWR by 19.6% but decreased WUEg by 27.9% over the period. Under CW treatment, however, CWR was increased by 3.1–15.8% but WUEg was decreased by 3.5–18.2% throughout three years. Clearly, the positive impact of CO2 enrichment on WUE was largely negated under canopy warming. Moreover, when assessing with individual year data, inter-annual variability of WUEg was insignificant under WA, smaller under CE but much higher under CW, compared to CK. These results indicated that an interaction by canopy warming overshadowed the potential increase in WUE with CO2 enrichment and enforced yearly fluctuation of the crop production under simulated climate change conditions. Therefore, improving water supply and management in agriculture should thus be endeavored to address the potential constraints with future trends of concurrent atmospheric CO2 enrichment and warming.

Suggested Citation

  • Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
  • Handle: RePEc:eee:agiwat:v:197:y:2018:i:c:p:100-109
    DOI: 10.1016/j.agwat.2017.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lovelli, S. & Perniola, M. & Di Tommaso, T. & Ventrella, D. & Moriondo, M. & Amato, M., 2010. "Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area," Agricultural Water Management, Elsevier, vol. 97(9), pages 1287-1292, September.
    2. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    3. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    4. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    5. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    6. Goyal, R. K., 2004. "Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India)," Agricultural Water Management, Elsevier, vol. 69(1), pages 1-11, September.
    7. Qiao, Yunzhou & Zhang, Huizhen & Dong, Baodi & Shi, Changhai & Li, Yuxin & Zhai, Hongmei & Liu, Mengyu, 2010. "Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes," Agricultural Water Management, Elsevier, vol. 97(11), pages 1742-1748, November.
    8. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    9. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    10. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    11. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    12. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    13. Guo, Ruiping & Lin, Zhonghui & Mo, Xingguo & Yang, Chunlin, 2010. "Responses of crop yield and water use efficiency to climate change in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1185-1194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manderscheid, Remy & Dier, Markus & Erbs, Martin & Sickora, Jan & Weigel, Hans-Joachim, 2018. "Nitrogen supply – A determinant in water use efficiency of winter wheat grown under free air CO2 enrichment," Agricultural Water Management, Elsevier, vol. 210(C), pages 70-77.
    2. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Renata Duffková & Jiří Holub & Petr Fučík & Jaroslav Rožnovský & Ivan Novotný, 2019. "Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    4. Oludare Sunday Durodola & Khaldoon A. Mourad, 2020. "Modelling the Impacts of Climate Change on Soybeans Water Use and Yields in Ogun-Ona River Basin, Nigeria," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    5. Changchun Xu & Xicheng Zhang & Jinxia Zhang & Yapeng Chen & Teshome L. Yami & Yang Hong, 2021. "Estimation of Crop Water Requirement Based on Planting Structure Extraction from Multi-Temporal MODIS EVI," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2231-2247, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    2. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    3. Xi Deng & Yao Huang & Wenjuan Sun & Lingfei Yu & Xunyu Hu & Sheng Wang, 2019. "Different Time Windows Provide Divergent Estimates of Climate Variability and Change Impacts on Maize Yield in Northeast China," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    4. Wang, Ruoyu & Bowling, Laura C. & Cherkauer, Keith A. & Cibin, Raj & Her, Younggu & Chaubey, Indrajeet, 2017. "Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt," Agricultural Water Management, Elsevier, vol. 180(PB), pages 280-296.
    5. Mingzhi Yang & Weihua Xiao & Yong Zhao & Xudong Li & Ya Huang & Fan Lu & Baodeng Hou & Baoqi Li, 2018. "Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    6. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    7. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    8. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    9. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    10. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    11. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    12. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    13. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    14. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
    15. Huili Chen & Zhongyao Liang & Yong Liu & Qingsong Jiang & Shuguang Xie, 2018. "Effects of drought and flood on crop production in China across 1949–2015: spatial heterogeneity analysis with Bayesian hierarchical modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 525-541, May.
    16. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    17. Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Jialing Yu & Jian Wu, 2018. "The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    19. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    20. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:197:y:2018:i:c:p:100-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.