IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v171y2019icp113-125.html
   My bibliography  Save this article

Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal

Author

Listed:
  • Bocchiola, D.
  • Brunetti, L.
  • Soncini, A.
  • Polinelli, F.
  • Gianinetto, M.

Abstract

The paradigmatic Dudh Koshi basin laid at the toe of Mt. Everest is largely visited by tourists every year, and yet agricultural productivity and food security therein are at stake under climate change. Agricultural yield in the area recently decreased, and the question arose whether cropping at higher altitudes may help adaptation. We investigated here the present, and future (until 2100) patterns of productivity of three main rain-fed crops in the catchment (wheat Triticum L., rice Oryza L., and maize Zea Mais L.). We explored food security using a nutritional index, given by the ratio of the caloric content from our target cereals, to daily caloric demand. We preliminary investigated whether vertical extension of the cropped area may increase food security. We did so by (i) mapping crops area using remote sensing, (ii) setting up the agronomic model Poly-Crop, (iii) feeding Poly-Crop with downscaled outputs from global climate models, and (iv) projecting vertical land occupation for cropping, population projections, and nutritional requirements. We estimated crop yield and food security at half century (2040–2050), and end of century (2090–2100), against a control run decade CR (2003−2013), under constant land use, and projected land occupation. On average, specific wheat yield would decrease against CR by −25% (rice −42%, maize −46%) at 2100, with largely yearly variability for unchanged land use scenario. Under modified land use scenario, wheat yield would decrease by −38%, while rice and maize yield would improve, maize very slightly (−22%, and −45%, against CR) in response to occupation of higher altitudes than now. Our food security index would decrease under all scenarios (111% in 2010, 49% on average at 2050, under a population peak, and 51% at 2100), and become more variable, however with potential for adaptation by colonization of higher lands (75%, 62%, at 2050, 2100). Very large expansion of one cereal (i.e. maize), may make food security more unstable, as mostly depending on erratic yield of that cereal only.

Suggested Citation

  • Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
  • Handle: RePEc:eee:agisys:v:171:y:2019:i:c:p:113-125
    DOI: 10.1016/j.agsy.2019.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18303718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    2. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    3. Shreedhar Maskey & Stefan Uhlenbrook & Sunal Ojha, 2011. "An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data," Climatic Change, Springer, vol. 108(1), pages 391-400, September.
    4. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    5. Basanta Paudel & Jungang Gao & Yili Zhang & Xue Wu & Shicheng Li & Jianzhong Yan, 2016. "Changes in Cropland Status and Their Driving Factors in the Koshi River Basin of the Central Himalayas, Nepal," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    6. World Bank, 2012. "World Development Indicators 2012," World Bank Publications - Books, The World Bank Group, number 6014, December.
    7. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    8. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    9. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    10. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    11. Confalonieri, Roberto & Acutis, Marco & Bellocchi, Gianni & Donatelli, Marcello, 2009. "Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice," Ecological Modelling, Elsevier, vol. 220(11), pages 1395-1410.
    12. Bhattarai, M. & Pant, D. & Mishra, V. S. & Devkota, H. & Pun, S. & Kayastha, R. N. & Molden, D., 2002. "Integrated development and management of water resources for productive and equitable use in the Indrawati River Basin, Nepal," IWMI Working Papers H030393, International Water Management Institute.
    13. Supit, I. & van Diepen, C.A. & de Wit, A.J.W. & Kabat, P. & Baruth, B. & Ludwig, F., 2010. "Recent changes in the climatic yield potential of various crops in Europe," Agricultural Systems, Elsevier, vol. 103(9), pages 683-694, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    2. Bohao Cui & Yili Zhang & Zhaofeng Wang & Changjun Gu & Linshan Liu & Bo Wei & Dianqing Gong & Mohan Kumar Rai, 2022. "Ecological Risk Assessment of Transboundary Region Based on Land-Cover Change: A Case Study of Gandaki River Basin, Himalayas," Land, MDPI, vol. 11(5), pages 1-22, April.
    3. Fang, Lan & Fu, Yong & Chen, Shaojian & Mao, Hui, 2021. "Can water rights trading pilot policy ensure food security in China? Based on the difference-in-differences method," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 23(6), pages 1415-1434.
    4. Mazhar Mughal & Charlotte Fontan Sers, 2020. "Cereal production, undernourishment, and food insecurity in South Asia," Review of Development Economics, Wiley Blackwell, vol. 24(2), pages 524-545, May.
    5. Bannor, Frank & Dikgang, Johane & Gelo, Dambala, 2021. "Agricultural total factor productivity growth, technical efficiency, and climate variability in sub-Saharan Africa," EconStor Preprints 231310, ZBW - Leibniz Information Centre for Economics.
    6. Wun-Jheng Wu & Pei-Ing Wu & Je-Liang Liou, 2021. "Boon or Bane: Effect of Adjacent YIMBY or NIMBY Facilities on the Benefit Evaluation of Open Spaces or Cropland," Sustainability, MDPI, vol. 13(7), pages 1-20, April.
    7. Yong Liu & Jin Liu & Yunpeng Su, 2021. "Low-Carbon Awareness and Behaviors: Effects of Exposure to Climate Change Impact Photographs," SAGE Open, , vol. 11(3), pages 21582440211, July.
    8. Talukdar, Swapan & Naikoo, Mohd Waseem & Mallick, Javed & Praveen, Bushra & Shahfahad, & Sharma, Pritee & Islam, Abu Reza Md. Towfiqul & Pal, Swades & Rahman, Atiqur, 2022. "Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping," Agricultural Systems, Elsevier, vol. 196(C).
    9. Samane Ghazali & Hossein Azadi & Alishir Kurban & Nicolae Ajtai & Marcin Pietrzykowski & Frank Witlox, 2021. "Determinants of farmers’ adaptation decisions under changing climate: the case of Fars province in Iran," Climatic Change, Springer, vol. 166(1), pages 1-24, May.
    10. Bannor, Frank & Dikgang, Johane & Kutela Gelo, Dambala, 2021. "Interdependence between research and development, climate variability and agricultural production: evidence from sub-Saharan Africa," MPRA Paper 105697, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    2. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    3. Mingzhi Yang & Weihua Xiao & Yong Zhao & Xudong Li & Ya Huang & Fan Lu & Baodeng Hou & Baoqi Li, 2018. "Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    4. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    5. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl & Cornejo, Karen, 2016. "A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment," Agricultural Systems, Elsevier, vol. 148(C), pages 75-85.
    6. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    7. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    8. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    9. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    10. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    11. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Li, Xuechun & Chen, Dan & Cao, Xinchun & Luo, Zhaohui & Webber, Michael, 2020. "Assessing the components of, and factors influencing, paddy rice water footprint in China," Agricultural Water Management, Elsevier, vol. 229(C).
    13. Jalota, S.K. & Kaur, Harsimran & Kaur, Samanpreet & Vashisht, B.B., 2013. "Impact of climate change scenarios on yield, water and nitrogen-balance and -use efficiency of rice–wheat cropping system," Agricultural Water Management, Elsevier, vol. 116(C), pages 29-38.
    14. Straffelini, Eugenio & Tarolli, Paolo, 2023. "Climate change-induced aridity is affecting agriculture in Northeast Italy," Agricultural Systems, Elsevier, vol. 208(C).
    15. Wang, Ruoyu & Bowling, Laura C. & Cherkauer, Keith A. & Cibin, Raj & Her, Younggu & Chaubey, Indrajeet, 2017. "Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt," Agricultural Water Management, Elsevier, vol. 180(PB), pages 280-296.
    16. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    17. Ahmadi, Mojgan & Etedali, Hadi Ramezani & Elbeltagi, Ahmed, 2021. "Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran," Agricultural Water Management, Elsevier, vol. 254(C).
    18. Fei, Li & Meijun, Zhou & Jiaqi, Shao & Zehui, Chen & Xiaoli, Wei & Jiuchun, Yang, 2020. "Maize, wheat and rice production potential changes in China under the background of climate change," Agricultural Systems, Elsevier, vol. 182(C).
    19. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    20. Weitzel, Matthias & Ghosh, Joydeep & Peterson, Sonja & Pradhan, Basanta K., 2015. "Effects of international climate policy for India: evidence from a national and global CGE model," Environment and Development Economics, Cambridge University Press, vol. 20(4), pages 516-538, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:171:y:2019:i:c:p:113-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.