IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v210y2023ics0308521x23001300.html
   My bibliography  Save this article

Diversity of pesticide use trajectories during agroecological transitions in vineyards: The case of the French DEPHY network

Author

Listed:
  • Fouillet, Esther
  • Delière, Laurent
  • Flori, Albert
  • Rapidel, Bruno
  • Merot, Anne

Abstract

Winegrowers apply large quantities of pesticides to their vineyards to reduce high cryptogamic pressure. But these practices must change to lower pesticide use and improve viticulture sustainability. Different options for curbing pesticide use exist, and they can be progressively implemented following a specific temporal scheme in each production system. Some change trajectories can be more efficient than others in limiting pesticide applications. Combining trajectory studies and typology may be helpful in characterizing how farmers change their practices and in summarizing the various production system trajectories possible when transitioning towards pesticide use reduction.

Suggested Citation

  • Fouillet, Esther & Delière, Laurent & Flori, Albert & Rapidel, Bruno & Merot, Anne, 2023. "Diversity of pesticide use trajectories during agroecological transitions in vineyards: The case of the French DEPHY network," Agricultural Systems, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:agisys:v:210:y:2023:i:c:s0308521x23001300
    DOI: 10.1016/j.agsy.2023.103725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X23001300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2023.103725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landais, E., 1998. "Modelling farm diversity: new approaches to typology building in France," Agricultural Systems, Elsevier, vol. 58(4), pages 505-527, December.
    2. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    3. Dardonville, Manon & Bockstaller, Christian & Villerd, Jean & Therond, Olivier, 2022. "Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding," Agricultural Systems, Elsevier, vol. 197(C).
    4. Chloé Salembier & Blanche Segrestin & Nicolas Sinoir & Joseph Templier & Benoit Weil & Jean-Marc Meynard, 2020. "Design of equipment for agroecology: Coupled innovation processes led by farmer-designers," Post-Print hal-02615799, HAL.
    5. Jennifer Blesh & Steven Wolf, 2014. "Transitions to agroecological farming systems in the Mississippi River Basin: toward an integrated socioecological analysis," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(4), pages 621-635, December.
    6. Perrin, Augustine & Cristobal, Magali San & Milestad, Rebecka & Martin, Guillaume, 2020. "Identification of resilience factors of organic dairy cattle farms," Agricultural Systems, Elsevier, vol. 183(C).
    7. Chèze, Benoît & David, Maia & Martinet, Vincent, 2020. "Understanding farmers' reluctance to reduce pesticide use: A choice experiment," Ecological Economics, Elsevier, vol. 167(C).
    8. Stéphanie Alvarez & Carl J Timler & Mirja Michalscheck & Wim Paas & Katrien Descheemaeker & Pablo Tittonell & Jens A Andersson & Jeroen C J Groot, 2018. "Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-24, May.
    9. Heitor Mancini Teixeira & Leonardo Van den Berg & Irene Maria Cardoso & Ardjan J. Vermue & Felix J. J. A. Bianchi & Marielos Peña-Claros & Pablo Tittonell, 2018. "Understanding Farm Diversity to Promote Agroecological Transitions," Sustainability, MDPI, vol. 10(12), pages 1-20, November.
    10. Wilson, Clevo & Tisdell, Clem, 2001. "Why farmers continue to use pesticides despite environmental, health and sustainability costs," Ecological Economics, Elsevier, vol. 39(3), pages 449-462, December.
    11. Adam M. Ross & Donna H. Rhodes & Daniel E. Hastings, 2008. "Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value," Systems Engineering, John Wiley & Sons, vol. 11(3), pages 246-262, September.
    12. Kobrich, C. & Rehman, T. & Khan, M., 2003. "Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan," Agricultural Systems, Elsevier, vol. 76(1), pages 141-157, April.
    13. Finger, Robert & Möhring, Niklas, 2022. "The adoption of pesticide-free wheat production and farmers' perceptions of its environmental and health effects," Ecological Economics, Elsevier, vol. 198(C).
    14. Salembier, Chloé & Segrestin, Blanche & Sinoir, Nicolas & Templier, Joseph & Weil, Benoît & Meynard, Jean-Marc, 2020. "Design of equipment for agroecology: Coupled innovation processes led by farmer-designers," Agricultural Systems, Elsevier, vol. 183(C).
    15. François J Dessart & Jesús Barreiro-Hurlé & René van Bavel, 2019. "Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(3), pages 417-471.
    16. Deffontaines, Landry & Mottes, Charles & Della Rossa, Pauline & Lesueur-Jannoyer, Magalie & Cattan, Philippe & Le Bail, Marianne, 2020. "How farmers learn to change their weed management practices: Simple changes lead to system redesign in the French West Indies," Agricultural Systems, Elsevier, vol. 179(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stylianou, Andreas & Sdrali, Despina & Apostolopoulos, Constantinos D., 2020. "Capturing the diversity of Mediterranean farming systems prior to their sustainability assessment: The case of Cyprus," Land Use Policy, Elsevier, vol. 96(C).
    2. Elizabeth Ahikiriza & Joshua Wesana & Xavier Gellynck & Guido Van Huylenbroeck & Ludwig Lauwers, 2021. "Context Specificity and Time Dependency in Classifying Sub-Saharan Africa Dairy Cattle Farmers for Targeted Extension Farm Advice: The Case of Uganda," Agriculture, MDPI, vol. 11(9), pages 1-19, August.
    3. Bisrat Haile Gebrekidan & Thomas Heckelei & Sebastian Rasch, 2020. "Characterizing Farmers and Farming System in Kilombero Valley Floodplain, Tanzania," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    4. Kong, Rada & Castella, Jean-Christophe, 2021. "Farmers' resource endowment and risk management affect agricultural practices and innovation capacity in the Northwestern uplands of Cambodia," Agricultural Systems, Elsevier, vol. 190(C).
    5. Bakker, L. & Sok, J. & van der Werf, W. & Bianchi, F.J.J.A., 2021. "Kicking the Habit: What Makes and Breaks Farmers' Intentions to Reduce Pesticide Use?," Ecological Economics, Elsevier, vol. 180(C).
    6. Emtage, Nicholas & Herbohn, John, 2012. "Assessing rural landholders diversity in the Wet Tropics region of Queensland, Australia in relation to natural resource management programs: A market segmentation approach," Agricultural Systems, Elsevier, vol. 110(C), pages 107-118.
    7. Lapierre, Margaux & Le Velly, Gwenolé & Bougherara, Douadia & Préget, Raphaële & Sauquet, Alexandre, 2023. "Designing agri-environmental schemes to cope with uncertainty," Ecological Economics, Elsevier, vol. 203(C).
    8. Shuo Lei & Lu Zhang & Chunfei Hou & Yongwei Han, 2023. "Internet Use, Subjective Well-Being, and Environmentally Friendly Practices in Rural China: An Empirical Analysis," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    9. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    10. Matthew C. LaFevor & Aoife K. Pitts, 2022. "Irrigation Increases Crop Species Diversity in Low-Diversity Farm Regions of Mexico," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    11. Marie Asma Ben-Othmen & Mariia Ostapchuk, 2023. "How diverse are farmers’ preferences for large-scale grassland ecological restoration? Evidence from a discrete choice experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(3), pages 341-375, December.
    12. Yanbing Wang & Niklas Möhring & Robert Finger, 2023. "When my neighbors matter: Spillover effects in the adoption of large‐scale pesticide‐free wheat production," Agricultural Economics, International Association of Agricultural Economists, vol. 54(2), pages 256-273, March.
    13. Fatmir Guri & Ilir Kapaj & Bahri Musabelliu & Maksim Meço & Eneida Topulli & Remzi Keco & Natasha Hodaj & Shpresim Domi & Gentjan Mehmeti & Sergio Gomez y Paloma, 2015. "Characteristics of farming systems in Albania," JRC Research Reports JRC95833, Joint Research Centre.
    14. Massfeller, Anna & Meraner, Manuela & Hüttel, Silke & Uehleke, Reinhard, 2022. "Farmers' acceptance of results-based agri-environmental schemes: A German perspective," Land Use Policy, Elsevier, vol. 120(C).
    15. Mack, G. & Finger, R. & Ammann, J. & El Benni, N., 2023. "Modelling policies towards pesticide-free agricultural production systems," Agricultural Systems, Elsevier, vol. 207(C).
    16. Vázquez, Ibán & Sineiro, Francisco & García, Ana Isabel, 2014. "Trayectorias de crecimiento de las explotaciones agrarias en la Cornisa Cantábrica," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 14(02), pages 1-32, December.
    17. Inga C. Melchior & Jens Newig, 2021. "Governing Transitions towards Sustainable Agriculture—Taking Stock of an Emerging Field of Research," Sustainability, MDPI, vol. 13(2), pages 1-27, January.
    18. Kumar, Shalander & Craufurd, Peter & Haileslassie, Amare & Ramilan, Thiagarajah & Rathore, Abhishek & Whitbread, Anthony, 2019. "Farm typology analysis and technology assessment: An application in an arid region of South Asia," Land Use Policy, Elsevier, vol. 88(C).
    19. Zhanping Hu, 2020. "What Socio-Economic and Political Factors Lead to Global Pesticide Dependence? A Critical Review from a Social Science Perspective," IJERPH, MDPI, vol. 17(21), pages 1-22, November.
    20. Kabirigi, Michel & Hermans, Frans & Sun, Zhanli & Gaidashova, Svetlana V. & McCampbell, Mariette & Adewopo, Julius B. & Schut, Marc, 2024. "Using farm typology to understand banana Xanthomonas wilt management in Rwanda," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 96(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:210:y:2023:i:c:s0308521x23001300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.