IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v191y2021ics0308521x21001025.html
   My bibliography  Save this article

Exploring climate-resilient and risk-efficient cropping strategies using a new pond irrigation system: An experimental study in northern Ghana

Author

Listed:
  • Koide, Junji
  • Yokoyama, Shigeki
  • Hirouchi, Shinji
  • Hirose, Chikako
  • Oka, Naoko
  • Oda, Masato
  • Yanagihara, Seiji

Abstract

The planned interventions to enhance adaptation and build resilience of predominantly rainfed and vulnerable smallholder production systems to climate change in African drylands include small-scale irrigation using rainwater harvesting reservoirs. However, the required technological improvement, participatory breakthroughs, institutional settings, farm risk management, and investment justification are rarely established comprehensively and integrated into adaptive planning.

Suggested Citation

  • Koide, Junji & Yokoyama, Shigeki & Hirouchi, Shinji & Hirose, Chikako & Oka, Naoko & Oda, Masato & Yanagihara, Seiji, 2021. "Exploring climate-resilient and risk-efficient cropping strategies using a new pond irrigation system: An experimental study in northern Ghana," Agricultural Systems, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:agisys:v:191:y:2021:i:c:s0308521x21001025
    DOI: 10.1016/j.agsy.2021.103149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21001025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    2. Maleka, Phiri, 1993. "An application of target MOTAD model to crop production in Zambia: Gwembe Valley as a case study," Agricultural Economics, Blackwell, vol. 9(1), pages 15-35, July.
    3. Adesina, A. A. & Ouattara, A. D., 2000. "Risk and agricultural systems in northern Cote d'Ivoire," Agricultural Systems, Elsevier, vol. 66(1), pages 17-32, October.
    4. Power, Brendan & Cacho, Oscar J, 2014. "Identifying risk-efficient strategies using stochastic frontier analysis and simulation: An application to irrigated cropping in Australia," Agricultural Systems, Elsevier, vol. 125(C), pages 23-32.
    5. De Pinto, Alessandro & Demirag, Ulaç & Haruna, Akiko & Koo, Jawoo & Asamoah, Marian, 2012. "Climate change, agriculture, and foodcrop production in Ghana," GSSP policy notes 3, International Food Policy Research Institute (IFPRI).
    6. Beegle, Kathleen & Carletto, Calogero & Himelein, Kristen, 2012. "Reliability of recall in agricultural data," Journal of Development Economics, Elsevier, vol. 98(1), pages 34-41.
    7. Meyer-Aurich, Andreas & Gandorfer, Markus & Trost, Benjamin & Ellmer, Frank & Baumecker, Michael, 2016. "Risk efficiency of irrigation to cereals in northeast Germany with respect to nitrogen fertilizer," Agricultural Systems, Elsevier, vol. 149(C), pages 132-138.
    8. Jalloh, Abdulai & Nelson, Gerald C. & Thomas, Timothy S. & Zougmoré, Robert & Roy-Macauley, Harold, 2013. "West african agriculture and climate change: A comprehensive analysis:," Issue briefs 75, International Food Policy Research Institute (IFPRI).
    9. Teruaki Nanseki & Yoshinori Morooka, 1991. "Risk preference and optimal crop combinations in upland Java, Indonesia: an application of stochastic programming," Agricultural Economics, International Association of Agricultural Economists, vol. 5(1), pages 39-58, January.
    10. Wossen, Tesfamicheal & Berger, Thomas & Haile, Mekbib G. & Troost, Christian, 2018. "Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa," Agricultural Systems, Elsevier, vol. 163(C), pages 7-15.
    11. Phiri Maleka, 1993. "An application of Target MOTAD Model to crop production in Zambia: Gwembe Valley as a case study," Agricultural Economics, International Association of Agricultural Economists, vol. 9(1), pages 15-35, July.
    12. Shiratori, Sakiko, 2019. "Consumer preference on rice as the most favorite staple food in rural Ghana," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 291291, Agricultural and Applied Economics Association.
    13. Fox, P. & Rockstrom, J. & Barron, J., 2005. "Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya," Agricultural Systems, Elsevier, vol. 83(3), pages 231-250, March.
    14. B. Smit & I. Burton & R.J.T. Klein & R. Street, 1999. "The Science of Adaptation: A Framework for Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 4(3), pages 199-213, September.
    15. Lars Otto Naess, 2013. "The role of local knowledge in adaptation to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 4(2), pages 99-106, March.
    16. Namara, Regassa E. & Horowitz, Leah & Nyamadi, Ben & Barry, Boubacar, 2011. "Irrigation development in Ghana: Past experiences, emerging opportunities, and future directions," GSSP working papers 27, International Food Policy Research Institute (IFPRI).
    17. Luz Maria Castro & Fabian Härtl & Santiago Ochoa & Baltazar Calvas & Leonardo Izquierdo & Thomas Knoke, 2018. "Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations," Journal of Bioeconomics, Springer, vol. 20(2), pages 183-211, July.
    18. McCord, Paul & Waldman, Kurt & Baldwin, Elizabeth & Dell'Angelo, Jampel & Evans, Tom, 2018. "Assessing multi-level drivers of adaptation to climate variability and water insecurity in smallholder irrigation systems," World Development, Elsevier, vol. 108(C), pages 296-308.
    19. Ruben Weesie, 2019. "Towards Adaptive Commons: A Case Study of Agro-Pastoral Dams in Northern Ghana," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    20. Epule, Terence Epule & Ford, James D. & Lwasa, Shuaib & Lepage, Laurent, 2017. "Climate change adaptation in the Sahel," Environmental Science & Policy, Elsevier, vol. 75(C), pages 121-137.
    21. Nanseki, Teruaki & Morooka, Yoshinori, 1991. "Risk preference and optimal crop combinations in upland Java, Indonesia: An application of stochastic programming," Agricultural Economics, Blackwell, vol. 5(1), pages 39-58, January.
    22. Sanfo, Safiétou & Barbier, Bruno & Dabiré, Isabelle W.P. & Vlek, Paul L.G. & Fonta, William M. & Ibrahim, Boubacar & Barry, Boubacar, 2017. "Rainfall variability adaptation strategies: An ex-ante assessment of supplemental irrigation from farm ponds in southern Burkina Faso," Agricultural Systems, Elsevier, vol. 152(C), pages 80-89.
    23. Xie, Hua & You, Liangzhi & Wielgosz, Benjamin & Ringler, Claudia, 2014. "Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 131(C), pages 183-193.
    24. Sekyi-Annan, Ephraim & Tischbein, Bernhard & Diekkrüger, Bernd & Khamzina, Asia, 2018. "Performance evaluation of reservoir-based irrigation schemes in the Upper East region of Ghana," Agricultural Water Management, Elsevier, vol. 202(C), pages 134-145.
    25. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    26. You, Liangzhi & Ringler, Claudia & Wood-Sichra, Ulrike & Robertson, Richard & Wood, Stanley & Zhu, Tingju & Nelson, Gerald & Guo, Zhe & Sun, Yan, 2011. "What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach," Food Policy, Elsevier, vol. 36(6), pages 770-782.
    27. Torkamani, Javad, 2005. "Using a whole-farm modelling approach to assess prospective technologies under uncertainty," Agricultural Systems, Elsevier, vol. 85(2), pages 138-154, August.
    28. Sheona Shackleton & Gina Ziervogel & Susannah Sallu & Thomas Gill & Petra Tschakert, 2015. "Why is socially‐just climate change adaptation in sub‐Saharan Africa so challenging? A review of barriers identified from empirical cases," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(3), pages 321-344, May.
    29. Osaki, Mauro & Batalha, Mário Otavio, 2014. "Optimization model of agricultural production system in grain farms under risk, in Sorriso, Brazil," Agricultural Systems, Elsevier, vol. 127(C), pages 178-188.
    30. Kemeze, Francis H., 2020. "Demand for Supplemental Irrigation via Small-Scale Water Harvesting," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304569, Agricultural and Applied Economics Association.
    31. Namara, Regassa E., 2011. "Irrigation development in Ghana: past experiences, emerging opportunities, and future directions," IWMI Working Papers H043830, International Water Management Institute.
    32. Burney, Jennifer A. & Naylor, Rosamond L., 2012. "Smallholder Irrigation as a Poverty Alleviation Tool in Sub-Saharan Africa," World Development, Elsevier, vol. 40(1), pages 110-123.
    33. Heather E. Thompson & Lea Berrang-Ford & James D. Ford, 2010. "Climate Change and Food Security in Sub-Saharan Africa: A Systematic Literature Review," Sustainability, MDPI, vol. 2(8), pages 1-15, August.
    34. John Gibson & Bonggeun Kim, 2007. "Measurement Error in Recall Surveys and the Relationship between Household Size and Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 473-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amadu, Festus O. & McNamara, Paul E. & Davis, Kristin E., 2021. "Soil health and grain yield impacts of climate resilient agriculture projects: Evidence from southern Malawi," Agricultural Systems, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Hua & You, Liangzhi & Takeshima, Hiroyuki, 2017. "Invest in small-scale irrigated agriculture: A national assessment on potential to expand small-scale irrigation in Nigeria," Agricultural Water Management, Elsevier, vol. 193(C), pages 251-264.
    2. Raymond van Der Wijngaart & John Helming & Claire Jacobs & Pedro Andres Garzon Delvaux & Steven Hoek & Sergio Gomez y Paloma, 2019. "Irrigation and irrigated agriculture potential in the Sahel: The case of the Niger river basin: Prospective review of the potential and constraints in a changing climate," JRC Research Reports JRC108657, Joint Research Centre.
    3. Xie, Hua & You, Liangzhi & Dile, Yihun T. & Worqlul, Abeyou W. & Bizimana, Jean-Claude & Srinivasan, Raghavan & Richardson, James W. & Gerik, Thomas & Clark, Neville, 2021. "Mapping development potential of dry-season small-scale irrigation in Sub-Saharan African countries under joint biophysical and economic constraints - An agent-based modeling approach with an applicat," Agricultural Systems, Elsevier, vol. 186(C).
    4. Simone Passarelli & Dawit Mekonnen & Elizabeth Bryan & Claudia Ringler, 2018. "Evaluating the pathways from small-scale irrigation to dietary diversity: evidence from Ethiopia and Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 981-997, August.
    5. Lien, Gudbrand & Hardaker, J. Brian & Asseldonk, Marcel A.P.M. van & Richardson, James W., 2009. "Risk programming and sparse data: how to get more reliable results," Agricultural Systems, Elsevier, vol. 101(1-2), pages 42-48, June.
    6. Amjath-Babu, T.S. & Krupnik, Timothy J. & Kaechele, Harald & Aravindakshan, Sreejith & Sietz, Diana, 2016. "Transitioning to groundwater irrigated intensified agriculture in Sub-Saharan Africa: An indicator based assessment," Agricultural Water Management, Elsevier, vol. 168(C), pages 125-135.
    7. de Fraiture, Charlotte & Giordano, Meredith, 2014. "Small private irrigation: A thriving but overlooked sector," Agricultural Water Management, Elsevier, vol. 131(C), pages 167-174.
    8. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    9. Dessalegn, Mengistu & Merrey, D. J., 2014. "Is ‘Social Cooperation’ for traditional irrigation, while ‘Technology’ is for motor pump irrigation?," IWMI Reports 201004, International Water Management Institute.
    10. Benjamin T. Anang & Stefan Bäckman & Antonios Rezitis, 2017. "Production technology and technical efficiency: irrigated and rain-fed rice farms in northern Ghana," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 7(1), pages 95-113, April.
    11. Kafle, Kashi & Omotilewa, Oluwatoba J., 2021. "Who is likely to benefit from public and private sector investments in farmer-led irrigation? Evidence from Ethiopia," 2021 Annual Meeting, August 1-3, Austin, Texas 313964, Agricultural and Applied Economics Association.
    12. Aarnoudse, E. & Closas, Alvar & Lefore, Nicole, 2018. "Water user associations: a review of approaches and alternative management options for Sub-Saharan Africa," IWMI Working Papers H048782, International Water Management Institute.
    13. Dong-Gill Kim & Elisa Grieco & Antonio Bombelli & Jonathan E. Hickman & Alberto Sanz-Cobena, 2021. "Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 457-476, April.
    14. Elizabeth Bryan & Elisabeth Garner, 2022. "Understanding the pathways to women’s empowerment in Northern Ghana and the relationship with small-scale irrigation," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(3), pages 905-920, September.
    15. Amisigo, Barnabas A. & McCluskey, Alyssa & Swanson, Richard, 2014. "Modeling impact of climate change on water resources and agriculture demand in the Volta Basin and other basin systems in Ghana," WIDER Working Paper Series 033, World Institute for Development Economic Research (UNU-WIDER).
    16. Barnabas A. Amisigo & Alyssa McCluskey & Richard Swanson, 2014. "Modeling Impact of Climate Change on Water Resources and Agriculture Demand in the Volta Basin and Other Basin Systems in Ghana," WIDER Working Paper Series wp-2014-033, World Institute for Development Economic Research (UNU-WIDER).
    17. Kafle, Kashi & Omotilewa, Oluwatoba & Leh, Mansoor, 2020. "Who benefits from farmer-led irrigation expansion in Ethiopia?," IWMI Working Papers H050118, International Water Management Institute.
    18. Domènech, Laia, 2015. "Is reliable water access the solution to undernutrition? A review of the potential of irrigation to solve nutrition and gender gaps in Africa South of the Sahara:," IFPRI discussion papers 1428, International Food Policy Research Institute (IFPRI).
    19. Higgins, Daniel & Arslan, Aslihan & Winters, Paul, 2021. "What role can small-scale irrigation play in promoting inclusive rural transformation? Evidence from smallholder rice farmers in the Philippines," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:191:y:2021:i:c:s0308521x21001025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.