IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v186y2021ics0308521x20307976.html
   My bibliography  Save this article

Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production

Author

Listed:
  • van Selm, Benjamin
  • de Boer, Imke J.M.
  • Ledgard, Stewart F.
  • van Middelaar, Corina E.

Abstract

Integrating dairy and beef production offers opportunities to reduce greenhouse gas (GHG) emissions of beef production, which is dominated by emissions related to maintenance of the breeding cow. This study aims to quantify the GHG reduction potential of the New Zealand (NZ) beef sector when replacing beef breeding cows and their calves with dairy beef animals. To this end, we combined a cattle herd model of NZ beef and dairy production with GHG emission calculations of beef production. We computed GHG emissions (to farm-gate stage) of the current amount of beef produced, while increasing the number of dairy beef calves at the expense of the number of suckler-beef calves. GHG emissions were 29% lower per kg carcass weight for dairy beef animals compared to suckler-beef animals. The average emission intensity decreased from 21.3 to 16.7 kg CO2e per kg carcass weight (−22%) as the number of suckler-beef animals declined to zero and dairy beef animals increased. Integrating dairy and beef production would enable the NZ beef sector to reduce annual GHG emissions by nearly 2000 kt CO2e (i.e. 22% of the total sector's emissions), while the dairy sector would improve their social licence to operate by reducing the number of surplus dairy calves slaughtered from 4-days old.

Suggested Citation

  • van Selm, Benjamin & de Boer, Imke J.M. & Ledgard, Stewart F. & van Middelaar, Corina E., 2021. "Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production," Agricultural Systems, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:agisys:v:186:y:2021:i:c:s0308521x20307976
    DOI: 10.1016/j.agsy.2020.102936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20307976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flysjö, Anna & Henriksson, Maria & Cederberg, Christel & Ledgard, Stewart & Englund, Jan-Eric, 2011. "The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden," Agricultural Systems, Elsevier, vol. 104(6), pages 459-469, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kearney, M. & O'Riordan, E.G. & Byrne, N. & Breen, J. & Crosson, P., 2023. "Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems," Agricultural Systems, Elsevier, vol. 211(C).
    2. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs & Dorian J. Garrick, 2022. "Agent-Based Modeling to Improve Beef Production from Dairy Cattle: Model Description and Evaluation," Agriculture, MDPI, vol. 12(10), pages 1-10, October.
    3. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs, 2021. "Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Young Beef Cattle Production in New Zealand," Agriculture, MDPI, vol. 11(9), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    2. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    3. Agostinho, F. & Oliveira, M.W. & Pulselli, F.M. & Almeida, C.M.V.B. & Giannetti, B.F., 2019. "Emergy accounting as a support for a strategic planning towards a regional sustainable milk production," Agricultural Systems, Elsevier, vol. 176(C).
    4. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl R. & Bas, Fernando, 2017. "Carbon footprint of sheep production systems in semi-arid zone of Chile: A simulation-based approach of productive scenarios and precipitation patterns," Agricultural Systems, Elsevier, vol. 157(C), pages 22-38.
    5. Congguang Zhang & Jiaming Sun & Jieying Ma & Fuqing Xu & Ling Qiu, 2019. "Environmental Assessment of a Hybrid Solar-Biomass Energy Supplying System: A Case Study," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    6. Hessle, Anna & Bertilsson, Jan & Stenberg, Bo & Kumm, Karl-Ivar & Sonesson, Ulf, 2017. "Combining environmentally and economically sustainable dairy and beef production in Sweden," Agricultural Systems, Elsevier, vol. 156(C), pages 105-114.
    7. Jacob Hawkins & Chunbo Ma & Steven Schilizzi & Fan Zhang, 2018. "China's changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 45-64, January.
    8. Jones, A.K. & Jones, D.L. & Cross, P., 2014. "The carbon footprint of lamb: Sources of variation and opportunities for mitigation," Agricultural Systems, Elsevier, vol. 123(C), pages 97-107.
    9. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    10. Min Hyeok LEE & Jong Seok LEE & Joo Young LEE & Yoon Ha KIM & Yoo Sung PARK & Kun Mo LEE, 2017. "Uncertainty Analysis of a GHG Emission Model Output Using the Block Bootstrap and Monte Carlo Simulation," Sustainability, MDPI, vol. 9(9), pages 1-12, August.
    11. Chun-Youl Baek & Kyu-Hyun Park & Kiyotaka Tahara & Yoon-Young Chun, 2017. "Data Quality Assessment of the Uncertainty Analysis Applied to the Greenhouse Gas Emissions of a Dairy Cow System," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    12. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    13. Lucio Cecchini & Biancamaria Torquati & Chiara Paffarini & Marco Barbanera & Daniele Foschini & Massimo Chiorri, 2016. "The Milk Supply Chain in Italy’s Umbria Region: Environmental and Economic Sustainability," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    14. Guyader, Jessie & Little, Shannan & Kröbel, Roland & Benchaar, Chaouki & Beauchemin, Karen A., 2017. "Comparison of greenhouse gas emissions from corn- and barley-based dairy production systems in Eastern Canada," Agricultural Systems, Elsevier, vol. 152(C), pages 38-46.
    15. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    16. Huang, Wei, 2022. "Demand for plant-based milk and effects of a carbon tax on fresh milk consumption in Sweden," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 518-529.
    17. Galloway, Craig & Conradie, Beatrice & Prozesky, Heidi & Esler, Karen, 2018. "Opportunities to improve sustainability on commercial pasture-based dairy farms by assessing environmental impact," Agricultural Systems, Elsevier, vol. 166(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:186:y:2021:i:c:s0308521x20307976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.